首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two self-transmissible Sym(biosis) plasmids, one encoding pea-specific nodulation and nitrogen-fixation functions (plasmid pJB5JI) and the other encoding clover-specific nodulation and nitrogen-fixation functions (plasmid pBR1AN) were used to determine whether the symbiotic genes encoded on these plasmids are expressed in various members of the Rhizobiaceae. The host specificity of Rhizobium trifolii and R. leguminosarum Sym plasmid-cured strains could be directly determined by the transfer to these strains of the appropriate Sym plasmid. The nodulation of white clovers was restored by either plasmid pJB5JI or pBR1AN when these plasmids were transferred to two transposon Tn5-induced hair-curling (Hac-) R. trifolii mutants. In addition, lucerne nodulation was restored to a Hac- R. meliloti mutant when either plasmid pBR1AN or pJB5JI was transferred to this strain. The phenotype of nonmucoid (Muc-) Rhizobium mutants, which had altered cell surfaces, was not influenced by the transfer to these strains of plasmid pBR1AN or plasmid pJB5JI.  相似文献   

2.
A nodulation plasmid, pRtr-514a, of molecular size 180 megadaltons (Mdal) was identified in Rhizobium trifolii strain NZP514. This plasmid was absent in both spontaneous and heat-cured Nod- derivatives of NZP514, and these strains were unable to induce root hair curling. The ability to nodulate clover was transferred from the wild-type strain to a Nod- derivatives, PN104, with the broad-host-range plasmid R68.45 (39 megadaltons) at a cotransfer frequency of about 4 X 10(-3). Most of the Nod+ transconjugants were resistant to kanamycin, tetracycline, and carbenicillin and had received a plasmid approximately 36 or 70 Mdal larger than pRtr514a but did not contain a plasmid of the size of R68.45, indicating that pRtr-514a was mobilized as a cointegrate plasmid containing either one or possibly two copies of R68.45. Use of these cointegrate-containing strains as donors in further crosses with the Nod- derivative strain PN118 resulted in high-frequency transfer of Nod+ (10(-3) to 10(-4), with cotransfer frequencies with kanamycin of up to 100%. Introduction of R68.45 into a derivative of NZP514 containing the broad-host-range plasmid pJP4 (52 Mdal) resulted in a high frequency of transconjugants carrying a cointegrate plasmid composed of pRtr-514a and pJP4. When used as donors to Nod- derivatives, such strains cotransferred Nod+ with kanamycin plus mercury at a frequency of 67%. The identification of stable cointegrates between pRtr-514a and the broad-host-range plasmids R68.45 and pJP4 should enable several genetic manipulations to be carried out with this nodulation plasmid, including the transfer of the plasmid to most gram-negative bacterial genera.  相似文献   

3.
Rhizobium trifolii T37 contains at least three plasmids with sizes of greater than 250 megadaltons. Southern blots of agarose gels of these plasmids probed with Rhizobium meliloti nif DNA indicated that the smallest plasmid, pRtT37a, contains the nif genes. Transfer of the Rhizobium leguminosarum plasmid pJB5JI, which codes for pea nodulation and the nif genes and is genetically marked with Tn5, into R. trifolii T37 generated transconjugants containing a variety of plasmid profiles. The plasmid profiles and symbiotic properties of all of the transconjugants were stably maintained even after reisolation from nodules. The transconjugant strains were placed into three groups based on their plasmid profiles and symbiotic properties. The first group harbored a plasmid similar in size to pJB5JI (130 megadaltons) and lacked a plasmid corresponding to pRtT37a. These strains formed effective nodules on peas but were unable to nodulate clover and lacked the R. trifolii nif genes. This suggests that genes essential for clover nodulation as well as the R. trifolii nif genes are located on pRtT37a and have been deleted. The second group harbored hybrid plasmids formed from pRtT37a and pJB5JI which ranged in size from 140 to ca. 250 megadaltons. These transconjugants had lost the R. leguminosarum nif genes but retained the R. trifolii nif genes. Strains in this group nodulated both peas and clover but formed effective nodules only on clover. The third group of transconjugants contained a hybrid plasmid similar in size to pRtT37b. These strains contained the R. trifolii and R. leguminosarum nif genes and formed N2-fixing nodules on both peas and clover.  相似文献   

4.
Cooper JB  Long SR 《The Plant cell》1994,6(2):215-225
The development of nitrogen-fixing nodules is induced on the roots of legume host plants by Rhizobium bacteria. We employed a novel strategy to probe the underlying mechanism of nodule morphogenesis in alfalfa roots using pTZS, a broad host range plasmid carrying a constitutive trans-zeatin secretion (tzs) gene from Agrobacterium tumefaciens T37. This plasmid suppressed the Nod- phenotype of Rhizobium nodulation mutants such that mutants harboring pTZS stimulated the formation of nodulelike structures. Alfalfa roots formed more or fewer of these nodules according to both the nitrogen content of the environment and the position along the root at which the pTZS+ bacteria were applied, which parallels the physiological and developmental regulation of true Rhizobium nodule formation. This plasmid also conferred on Escherichia coli cells the ability to induce root cortical cell mitoses. Both the pattern of induced cell divisions and the spatially restricted expression of an alfalfa nodule-specific marker gene (MsENOD2) in pTZS-induced nodules support the conclusion that localized cytokinin production produces a phenocopy of nodule morphogenesis.  相似文献   

5.
The fungicide captafol is toxic to Rhizobium trifolii at concentrations greater than 75 μg/ml, and at lower concentrations it affects growth adversely. Captafol-resistant mutants were isolated and all were found to have lost the same plasmid and the ability to nodulate clovers. Nodulation plasmids transferred from a R. leguminosarum or R. trifolii donor to the resistant mutants conferred the ability to nodulate peas and clover plants, respectively. The rhizobia remained resistant to captafol indicating that the genetic alteration leading to captafol resistance was not necessarily detrimental to the ability of the bacteria to form nitrogen fixing nodules. These results indicate that captafol may act as a plasmid-curing agent in R. trifolii.  相似文献   

6.
Symbiotic DNA sequences involved in nodulation by Rhizobium must include genes responsible for recognizing homologous hosts. We sought these genes by mobilizing the symbiotic plasmid of a broad host-range Rhizobium MPIK3030 (= NGR234) that can nodulate Glycine max, Psophocarpus tetragonolobus, Vigna unguiculata, etc., into two Nod- Rhizobium mutants as well as into Agrobacterium tumefaciens. Subsequently, cosmid clones of pMPIK3030a were mobilized into Nod+ Rhizobium that cannot nodulate the chosen hosts. Nodule development was monitored by examining the ultrastructure of nodules formed by the transconjugants. pMPIK3030a could complement Nod- and Nif- deletions in R. leguminosarum and R. meliloti as well as enable A. tumefaciens to nodulate. Three non-overlapping sets of cosmids were found that conferred upon a slow-growing Rhizobium species, as well as on R. loti and R. meliloti, the ability to nodulate Psophocarpus and Vigna, thus pointing to the existence of three sets of host-specificity genes. Recipients harboring these hsn regions had truly broadened host-range since they could nodulate both their original hosts as well as MPIK3030 hosts.  相似文献   

7.
More than 50 symbiotic mutants of Rhizobium japonicum were isolated by purported plasmid-curing techniques. Wild-type R. japonicum strains were grown in liquid culture at 28 or 36 degrees C in different concentrations of acridine orange, ethidium bromide, or sodium dodecyl sulfate for selection of mutants. The symbiotic traits of 133 isolates from nine treatment groups were determined. Forty-two isolates were Nod- Nif+, seven were Nod+ Nif-, and two were Nod- Nif-. The nifDH genes were deleted in three mutants and consequently showed no hybridization to a nifDH probe. None of these mutants showed any detectable loss of plasmid DNA.  相似文献   

8.
The nodulation ability was effectively eliminated from different Rhizobium trifolii strains incubated at elevated temperature (urkowski and Lorkiewicz, 1978). Non-nodulating (Nod-) mutants were stable and no reversion of Nod- to Nod+ phenotype was observed. Strains R. trifolii 24 and T12 which showed a high percentage of elimination of nodulation ability were examined in detail. Two plasmids were detected in strain 24 using neutral and alkaline sucrose gradient centrifugation of plasmid preparations. Molecular weights of the plasmids pWZ1 and pWZ2 were 460 Mdal and 190 Mdal, respectively. Rhizobium lysates labeled with 3H-thymidine and ultracentrifuged in caesium chloride — ethidium bromide gradients demonstrated a 40% reduction of the plasmid DNA content in R. trifolii 24 Nod- mutants in comparison with the nodulating wild type strain 24. It was found further that non-nodulation of mutants 24 Nod- was due to the absence of plasmid pWZ2. Sucrose gradient data also demonstrated that strain T12 contained two plasmids with molecular weights corresponding to those of pWZ1 and pWZ2, respectively. In Nod- mutant clones derived from strain T12, pWZ2 plasmid was missing.Non Standard Abbreviations CCC covalently closed circular - OC open cirucular - Sarkosyl sodium N-lauroylsarcosinate  相似文献   

9.
A system which allows direct selection for curing of plasmids in Gram-negative bacteria was used to generate derivatives of Rhizobium leguminosarum VF39 cured of each of six plasmids present in this strain. Phenotypes could be correlated with the absence of five of the six plasmids. The smallest plasmid, pRleVF39a, carries genes for the production of a melanin-like pigment as has been previously reported. Plasmid pRleVF39d carries nodulation and nitrogen fixation genes. Curing of the plasmids pRleVF39c and pRleVF39e gave rise to strains which formed Fix- nodules on peas, lentils, and faba beans. The nodules formed by the strains cured of pRleVF39c contained few, if any, bacteria. Analysis of washed cells by SDS-PAGE showed that this strain is defective in lipopolysaccharide (LPS) production; the defect could be complemented by introducing plasmids from several other R. leguminosarum strains, and by the R. leguminosarum biovar phaseoli LPS gene clones pCos126 and pDel27. The nodules formed by the strain cured of pRleVF39e had a reduced symbiotic zone, an enlarged senescence zone, and an abundance of starch granules. This strain grew at a much slower rate than the wild type, was unable to grow on minimal medium, and no longer produced melanin. These defects could be complemented by at least one other Rhizobium plasmid, pRle336e, a plasmid of strain 336 which is distinct from the nodulation plasmid (pRle336c) and the plasmid (pRle336d) which could complement the LPS defect associated with the loss of pRleVF39c. This demonstrates that genes necessary for symbiosis can be carried on at least three different plasmids in R. leguminosarum.  相似文献   

10.
Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii transconjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. Our results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.  相似文献   

11.
Summary When the nodulating Rhizobium trifolii strain 24Vior containing plasmid RP4 was conjugated with the non-nodulating R. trifolii mutant strain 24StrrNod-35, plasmid RP4 was transferred at a frequency 10-3–10-4. Two out of nearly three thousand tested transconjugants which contained plasmid RP4 had acquired the ability to form nodules on clovers. Molecular studies of the DNA of both these nodulating transconjugants showed the presence of plasmid RP4 and another plasmid which was not found in the original recipient strain. The size of this second plasmid corresponded to that of the plasmid pWZ2, the elimination of which was correlated with irreversible loss of the nodulating ability of R. trifolii strain 24 (Zurkowski and Lorkiewicz 1979). Plasmid RP4 was eliminated from cells by ethidium bromide, without the loss of nodulating properties. The nodulation capacity, however, was eliminated from transconjugants after incubation of bacteria at elevated temperature. Non-nodulating clones obtained after such incubation did not contain the plasmid pWZ2. The results indicate that the plasmid pWZ2 is a necessary element for induction of nodules by R. trifolii, and that it can be mobilized by plasmid RP4.  相似文献   

12.
Insertion mutagenesis identified two negatively acting gene loci which restrict the ability of Rhizobium leguminosarum bv. trifolii TA1 to infect the homologous host Trifolium subterraneum cv. Woogenellup. One locus was confirmed by DNA sequence analysis as the nodM gene, while the other locus, designated csn-1 (cultivar-specific nodulation), is not located on the symbiosis plasmid. The presence of these cultivar specificity loci could be suppressed by the introduction of the nodT gene from ANU843, a related R. leguminosarum bv. trifolii strain. Other nod genes, present in R. leguminosarum bv. viciae (including nodX) and R. meliloti, were capable of complementing R. leguminosarum bv. trifolii TA1 for nodulation on cultivar Woogenellup. Nodulation studies conducted with F2 seedlings from a cross between cultivar Geraldton and cultivar Woogenellup indicated that a single recessive gene, designated rwt1, is responsible for the Nod- association between strain TA1 and cultivar Woogenellup. Parallels can be drawn between this association and gene-for-gene systems common in interactions between plants and biotrophic pathogens.  相似文献   

13.
Identification of the Sym plasmid in Rhizobium phaseoli strain RCC3622 is described. Introduction of this plasmid into R. trifolii or Agrobacterium tumefaciens strains resulted in bacteria capable of forming characteristic spherical root nodules on beans. This Sym plasmid, designated pSym9, was characterized as 275 MDa and nonconjugative. pSym9 was incompatible with the R. trifolii Sym plasmid pSym5, and carries genes determining a melanin-like black pigment. A second plasmid of 135 MDa, pRph3622a, was also transferred from R. phaseoli to R. trifolii and A. tumefaciens. Transconjugants carrying this plasmid did not form root nodules on beans. In contrast to other Rhizobium plasmids, pRph3622a was unstable in A. tumefaciens.  相似文献   

14.
15.
Forty-five Rhizobium strains nodulating sulla (Hedysarum coronarium L.), isolated from plants grown in different sites in Menorca Island and southern Spain, were examined for plasmid content and the location and organization of nif (nitrogen fixation) and nod (nodulation) sequences. A great diversity in both number and size of the plasmids was observed in this native population of strains, which could be distributed among 19 different groups according to their plasmid profiles. No correlation was found between plasmid profile and geographical origin of the strains. In each strain a single plasmid ranging from 187 to 349 megadaltons hybridized to Rhizobium meliloti nifHD and nodD DNA, and in three strains the spontaneous loss of this plasmid resulted in the loss of the nodulation capacity. In addition to the symbiotic plasmid, 18 different cryptic plasmids were identified. A characteristic cryptic plasmid of >1,000 megadaltons was present in all strains. Total DNA hybridization experiments, with nifHD and portions of nodC and nodD genes (coding for common nodulation functions) from R. meliloti as probes, demonstrated that both the sequence and organization of nif and common nod genes were highly conserved within rhizobia nodulating sulla. Evidence for reiteration of nodD sequences and for linkage of nodC to at least one copy of nodD was obtained for all the strains examined. From these results we conclude that Rhizobium strains nodulating sulla are a homogeneous group of symbiotic bacteria that are closely related to the classical fast-growing group of rhizobia.  相似文献   

16.
In Rhizobium-legume symbiosis, the plant host controls and optimizes the nodulation process by autoregulation. Tn5 mutants of Rhizobium leguminosarum bv. phaseoli TAL 182 which are impaired at various stages of symbiotic development, were used to examine autoregulation in the common bean (Phaseolus vulgaris L.). Class I mutants were nonnodulating, class II mutants induced small, distinct swellings on the roots, and a class III mutant formed pink, bacterium-containing, but ineffective nodules. A purine mutant (Ade-) was nonnodulating, while a pyrimidine mutant (Ura-) formed small swellings on the roots. Amino acid mutants (Leu-, Phe-, and Cys-) formed mostly empty white nodules. Each of the mutants was used as a primary inoculant on one side of a split-root system to assess its ability to suppress secondary nodulation by the wild type on the other side. All mutants with defects in nodulation ability, regardless of the particular stage of blockage, failed to induce a suppression response from the host. Only the nodulation-competent, bacterium-containing, but ineffective class III mutant induced a suppression response similar to that induced by the wild type. Suppression was correlated with the ability of the microsymbiont to proliferate inside the nodules but not with the ability to initiate nodule formation or the ability to fix nitrogen. Thus, the presence of bacteria inside the nodules may be required for the induction of nodulation suppression in the common bean.  相似文献   

17.
Abstract: The role of plasmids in the saprophytic growth of Rhizobium is mostly unknown. Plasmid-cured and complemented derivatives of R. leguminosarum bv. trifolii strain W14-2 were used to investigate the role of plasmids in the growth of this strain in sterile soil incubated under favorable moisture and temperature conditions. Strain W14-2 contains four plasmids ( a,b,c,d ). Absence of single plasmids in plasmid-cured derivatives generally did not reduce growth in soil when compared to the wild-type but absence of plasmid a delayed growth. Derivatives were unable to grow in soil when only plasmids a or d were present in cells. When only plasmids b or c were present, growth was delayed and the final population in 7 days was approximately 10% of the wild-type population. When the wild-type was co-inoculated at equal population into soil with derivatives lacking plasmids a , c , or d, the population of the wild-type at 7 days incubation was approximately 10 times larger than those of the derivatives. Elimination of only plasmid b did not reduce the ability of the strain to grow in soil when competing with the wild-type. Plasmids were involved in saprophytic growth of strain W14-2 in soil and may be important to the ecology of Rhizobium .  相似文献   

18.
In a previous paper it was shown that cocultivation of Rhizobium leguminosarum with the plant Vicia sativa subsp. nigra on solid medium causes a changed mode of growth of the plant roots, resulting in thick and short roots (Tsr). The Sym plasmid present in the bacterium appeared to be essential for causing Tsr (A. A. N. van Brussel, T. Tak, A. Wetselaar, E. Pees, and C. A. Wijffelman, Plant Sci. Lett. 27:317-325, 1982). In the present paper, we show that a role in causing Tsr is general for Sym plasmids of R. leguminosarum and Rhizobium trifolii. Moreover, mutants with transposon insertions in the Sym plasmid-localized nodulation genes nodA, B, C, and D are unable to cause Tsr, in contrast to nodulation mutants localized in other parts of the Sym plasmid. The observation that Tsr could also be brought about in liquid medium enabled us to show that Tsr is caused by a soluble factor. Experiments in which plants and bacteria were grown separately in the sterile supernatant fluids of each other resulted in establishing the following sequence of events. (i) The plant produces a factor, designated as factor A. (ii) Factor A causes the Sym plasmid-harboring bacteria to produce Tsr factor. (iii) Growth of young plants in the presence of Tsr factor results in the Tsr phenotype. Models explaining this example of molecular signalling between bacteria and plants are discussed.  相似文献   

19.
Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions.   总被引:40,自引:25,他引:15  
Rhizobium phaseoli CFN42 DNA was mutated by random insertion of Tn5 from suicide plasmid pJB4JI to obtain independently arising strains that were defective in symbiosis with Phaseolus vulgaris but grew normally outside the plant. When these mutants were incubated with the plant, one did not initiate visible nodule tissue (Nod-), seven led to slow nodule development (Ndv), and two led to superficially normal early nodule development but lacked symbiotic nitrogenase activity (Sna-). The Nod- mutant lacked the large transmissible indigenous plasmid pCFN42d that has homology to Klebsiella pneumoniae nitrogenase (nif) genes. The other mutants had normal plasmid content. In the two Sna- mutants and one Ndv mutant, Tn5 had inserted into plasmid pCFN42d outside the region of nif homology. The insertions of the other Ndv mutants were apparently in the chromosome. They were not in plasmids detected on agarose gels, and, in contrast to insertions on indigenous plasmids, they were transmitted in crosses to wild-type strain CFN42 at the same frequency as auxotrophic markers and with the same enhancement of transmission by conjugation plasmid R68.45. In these Ndv mutants the Tn5 insertions were the same as or very closely linked to mutations causing the Ndv phenotype. However, in two mutants with Tn5 insertions on plasmid pCFN42d, an additional mutation on the same plasmid, rather than Tn5, was responsible for the Sna- or Ndv phenotype. When plasmid pJB4JI was transferred to two other R. phaseoli strains, analysis of symbiotic mutants was complicated by Tn5-containing deleted forms of pJB4JI that were stably maintained.  相似文献   

20.
One type of competitive interaction among rhizobia is that between nonnodulating and nodulating strains of Rhizobium leguminosarum on primitive pea genotypes. Pisum sativum cv. Afghanistan nodulates effectively with R. leguminosarum TOM, and this can be blocked in mixed inoculations by R. leguminosarum PF2, which does not nodulate this cultivar. We termed this PF2 phenotype Cnb+, for competitive nodulation blocking. Strain PF2 contains three large plasmids including a 250-kilobase-pair symbiotic (Sym) plasmid. Transfer of this plasmid, pSymPF2, to nonblocking rhizobia conferred the Cnb+ phenotype on recipients in mixed inoculations on cultivar Afghanistan with TOM. A library of the PF2 genome constructed in the vector pMMB33 was used to isolate two cosmid clones which hybridize to pSymPF2. These cosmids, pDD50 and pDD58, overlapped to the extent of 23 kilobase pairs and conferred a Cnb+ phenotype on recipient Cnb- rhizobia, as did pSD1, a subclone from the common region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号