首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R P Millar  A Garritsen  E Hazum 《Peptides》1982,3(5):789-792
Gonadotropin-releasing hormone (GnRH) binding sites in intact Leydig cells and in membrane preparations were investigated using 125I-labeled GnRH agonist and antagonist. Binding was saturable and involved a single class of high affinity sites. Intact Leydig cells and a membrane preparation had a higher affinity for GnRH agonist (Kd 3.0 +/- 1.7 X 10(-10) M) than for GnRH antagonist (Kd 10.0 +/- 1.8 X 10(-10) M). With anterior pituitary membranes the Kd was 2.8 +/- 0.7 X 10(-10) M for the agonist and 2.4 +/- 1.4 X 10(-10) M for the antagonist. The Kd for GnRH was similar for Leydig cells and the anterior pituitary. Chymotrypsin and trypsin digestion decreased receptor binding, but neuraminidase increased Leydig cell binding in contrast to the decrease in binding observed with pituitary receptors. The results suggest that the Leydig cell GnRH binding sites may differ from the pituitary receptor which may be related to structural differences in GnRH-like peptides recently described in extracts of rat testis.  相似文献   

2.
Synthetic gonadotropin-releasing hormone (GnRH) was monoiodinated at a high specific radioactivity with 125I. The iodinated hormone retained full biological activity as assessed by the release of luteinizing hormone in vitro from bovine anterior pituitary tissue slices. Specific binding of 125I-labeled gonadotropin-releasing hormone of high affinity and low capacity was obtained using dispersed bovine anterior pituitary cells. The binding had sigmoid characteristics, compatible with the presence of more than one binding site. The subcellular fraction responsible for binding was identified with the plasma membranes. However, significant binding also occurred in the secretory granules fraction. The plasma membranes were solubilized with sodium dodecyl sulfate. Using gonadotropin-releasing hormone covalently coupled to a solid phase, a protein was purified by an affinity technique from the solubilized plasma membrane preparation which possessed similar binding propperties as plasma membranes, both intact and solubilized. The protein migrated as a single component on polyacrylamide gel in sodium dodecyl sulfate and the estimated molecular weight was 60 000. The character of the gonadotropin-releasing hormone concentration dependence binding as well as association kinetics were multiphasic and suggested the presence of more than one binding site. When analyzed by the Hill plot, the Hill coefficient of all binding curves was always greater than one which is compatible with positive cooperativity. This was further supported by the dissociation studies where the dissociation rate was inversely proportionate to both the gonadotropin-releasing hormone concentration and the time interval during which the gonadotropin-releasing hormone-gonadotropin-releasing hormone receptor protein complex was formed. Using difference chromatography, aggregation of the purified gonadotropin-releasing hormone receptor protein was demonstrated to occur upon its exposure to gonadotropin-releasing hormone. The formed macromolecular complexes bound preferentially 125I-labeled gonadotropin-releasing hormone. It is concluded that a single receptor protein is responsible for gonadotropin-releasing hormone binding in the bovine anterior pituitary. It is a part of the plasma membranes. Its interaction with gonadotropin-releasing hormone provokes transitions of the protein into different allosteric forms and this may be related to the biological effect of gonadotropin-releasing hormone on gonadotropin secretion.  相似文献   

3.
Somatostatin binding to its receptors on rat pancreatic acinar membranes was characterized with [125I-Tyr1]somatostatin. Binding at 24 degrees C was rapid reaching a maximum after 60 min and was reversible upon the addition of 1 microM unlabeled ligand. Scatchard analysis revealed a single class of binding sites, with a Kd of 0.32 +/- 0.03 nM and a binding capacity of 600 +/- 54 fmol/mg of protein. Specificity for the somatostatin was demonstrated with the inhibition of labeled hormone binding by somatostatin analogs in proportion to their biological activities. When [125I-Tyr1]somatostatin was cross-linked to its receptors with the photoreactive cross-linker n-hydroxysuccinimidyl-4-azidobenzoate, the hormone was associated with Mr = 90,000 protein. Similar mobilities of the radioactive band were observed in the presence and absence of dithiothreitol. In contrast to other unrelated peptides, cholecystokinin (CCK) and its analogs directly reduced [125I-Tyr1] somatostatin binding to isolated membranes. The effect of CCK was one-half-maximal at 3 nM and maximal at 100 nM. In the presence of 3 nM CCK8, the binding capacity for somatostatin was decreased to 237 +/- 39 fmol/mg of protein without a significant change in affinity. Dibutyryl cyclic GMP, a CCK receptor antagonist, blocked this action of CCK8 indicating that the CCK receptor mediated the decrease in [125-Tyr1]somatostatin binding. In contrast cerebral cortex membranes, which also possess a somatostatin receptor, were not regulated by CCK. These results indicate, therefore, that 1) purified pancreatic acinar plasma membranes contain specific receptors for somatostatin, 2) the receptor has an apparent Mr of about 90,000, and 3) the binding of somatostatin to its receptor on pancreatic plasma membranes is regulated by CCK analogs acting via the CCK receptor.  相似文献   

4.
The interaction of high-density lipoproteins (HDL) with adipocytes is important in the regulation of cellular cholesterol flux. To study the mechanisms of HDL binding and cellular processing, we incubated adipocytes isolated from epididymal and perirenal adipose tissue of male Wistar rats (300 g) with HDL1 (1.07-1.10 g/mL) and HDL2 (1.10-1.14 g/mL) fractions separated from rat plasma by gradient ultracentrifugation. Freshly isolated adipocytes were incubated with 125I-labeled HDL for 2 h at 37 degrees C to determine cell-associated uptake and degradation. Adipocytes from both fat regions showed significant cell-associated HDL1 and HDL2 uptake and very high medium degradation (2- to 6-fold higher than uptake). To assess 125I-labeled HDL binding independent of cellular metabolism, we purified adipocyte plasma membranes from isolated adipocytes and used them in binding assays. Binding of HDL1 and HDL2 in the membrane system was 85-95% specific, sensitive to high NaCl concentrations, and abolished by pronase treatment. In contrast to HDL2 binding, the maximum HDL1 binding to perirenal plasma membranes was significantly higher than its binding to epididymal membranes (7.2 +/- 1.3 vs. 4.4 +/- 0.2 micrograms/mg, n = 6, p less than 0.05). This increment in HDL1 binding to perirenal membranes represented an EDTA- sensitive, calcium-dependent component. These results indicate that HDL binding to adipocyte plasma membranes depends on both adipose tissue region and HDL subtype. The membrane binding characteristics, taken together with the cellular uptake results, suggest that adipocytes bind and metabolize HDL and that this interaction may involve a protein receptor.  相似文献   

5.
We have investigated the binding of high-density lipoprotein (HDL3, d = 1.12-1.21 g/ml), and apolipoprotein E-deficient human and rat HDL, obtained by heparin-Sepharose affinity chromatography, to intact cells and membrane preparations of rat intestinal mucosal cells. Binding of 125I-labeled HDL3 to the basolateral plasma membranes was characterised by a saturable, specific process (Kd = 21 micrograms of HDL3 protein/ml, Bmax = 660 ng HDL3 protein/mg membrane protein) and E-deficient human HDL demonstrated a similar affinity for the binding site. The basolateral plasma membranes isolated from proximal and distal portion of rat small intestine showed similar binding affinities for HDL3, whereas the interaction of HDL with brush-border membranes was characterised by mainly nonspecific and nonsaturable binding. The binding of 125I-labeled HDL3 to basolateral plasma membranes was competitively inhibited by unlabeled HDL3 but less efficiently by unlabeled human LDL. The putative HDL receptor was not dependent on the presence of divalent cations but was markedly influenced by temperature and sensitive to pronase treatment. We have also demonstrated, using whole intestinal mucosal cells, that lysine and arginine-modified HDL3 inhibited binding of normal 125I-labeled HDL3 to the same extent as normal excess HDL3. These data suggest that basolateral plasma membranes of rat intestinal mucosal cells possess a specific receptor for HDL3 which contains mainly apolipoprotein A-I and A-II, and the mechanisms of recognition of HDL3 differ from those involved in binding to the B/E receptor.  相似文献   

6.
Binding of 125I-labeled epidermal growth factor (EGF) was characterized in basolateral plasma membranes prepared from the livers of 21-day gestation fetuses, 14-day-old sucklings and adult Sprague-Dawley rats using a self-generating Percoll gradient method. The membrane preparations employed have been previously assayed in terms of plasma membrane protein yield, enrichment of various marker enzymes and sodium-dependent bile acid and amino acid transport. 125I-EGF binding was saturable and time and temperature dependent. Equilibrium analyses showed that the suckling period is characterized by a marked decrease in overall hepatic EGF binding capacity (460 +/- 50 fmol/mg protein) compared to either the fetal period (1290 +/- 160 fmol/mg) or to adults of either sex (males = 1540 +/- 230, females 1010 +/- 130 fmol/mg). Treatment of the suckling rat with parenteral EGF resulted in a 78% reduction in the observed binding capacity when assessed 2 h after growth factor administration. Comparison of binding affinities revealed no significant difference between the suckling and adult preparations (Kd = 0.40 +/- 0.03 vs. 0.39 +/- 0.02 nM, respectively); however, both preparations differed significantly from the fetal group which exhibited a decreased affinity of binding with a higher overall dissociation constant (Kd = 0.68 +/- 0.06 nM). Thus, it appears that major ontogenetic changes occur in the rat hepatic ligand/receptor system for epidermal growth factor. These changes are discussed in the context of transitional events in mammalian development such as birth and weaning.  相似文献   

7.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.  相似文献   

8.
Pituitary-adenylate-cyclase-activating polypeptide (PACAP) is a novel 38-amino-acid neuropeptide isolated from ovine hypothalamic tissues based on its activity of stimulating adenylate cyclase of rat pituitary cells. Binding sites for PACAP were studied in rat tissue membranes using a 27-amino-acid N-terminal derivative of PACAP [PACAP(1-27)] labelled with 125I. Particularly high specific binding sites of 125I-PACAP(1-27) were noted in the hypothalamus, brain stem, cerebellum and lung. Specific binding sites are also present in the pituitary gland, but at a lower concentration, and mainly in the anterior lobe. Very low concentration of 125I-PACAP(1-27)-binding sites were found in the colon, aorta and kidney membranes and no binding sites were detected in the pancreas and testis. Maximal binding of 125I-PACAP(1-27) was observed at pH 7.4. Interaction of 125I-PACAP(1-27) with its binding site was rapid, specific and saturable as well as time, pH and temperature dependent. PACAP(1-27) is more potent than PACAP in displacing the binding of 125I-PACAP(1-27) with brain membranes [concentration that inhibits 50% of the binding (IC50) = 7.45 +/- 1.52 nM and 11.45 +/- 3.65 nM, respectively; mean +/- SEM, n = 4] and lung membranes (IC50 = 4.41 +/- 0.87 nM and 10.68 +/- 3.09 nM, respectively). Vasoactive intestinal peptide displaced the binding of 125I-PACAP(1-27) in lung membrane (IC50 = 16.88 +/- 5.14 nM) but not in brain membranes. The equilibrium binding of 125I-PACAP(1-27) at 4 degrees C was characterized by a single class of binding site for the brain membrane with a dissociation constant (Kd) of 2.46 +/- 0.53 nM and a maximal binding capacity (Bmax) of 8.44 +/- 3.13 pmol/mg protein, but there were two classes of binding site for lung membranes with Kd of 1.02 +/- 0.51 nM and 5.19 +/- 0.99 nM, and Bmax of 2.84 +/- 0.72 pmol/mg protein and 9.13 +/- 1.89 pmol/mg protein, respectively. These findings suggest that subtypes of PACAP-binding sites exist and PACAP may have a physiological role in the hypothalamus/pituitary axis as well as in other regions of the brain and lung.  相似文献   

9.
These studies examined whether the decrease in pituitary responsiveness to gonadotropin-releasing hormone (GnRH) observed during lactation in the rat results from a change in pituitary GnRH receptors. GnRH binding capacity was determined by saturation analysis using D-Ala6 as both ligand and tracer. During the estrous cycle, the number of GnRH binding sites increased from 199 +/- 38 fmol/mg protein on estrus to 527 +/- 31 fmol/mg protein on the morning of proestrus, whereas there was no change in receptor affinity (Ka, 6-10 X 10(9) M-1), During lactation, females nursing 8 pups on Days 5 or 10 postpartum had 50% fewer GnRH receptors (109-120 fmol/mg protein) than observed during estrus or diestrus 1 (199-242 fmol/mg protein) although receptor affinity was similar among all the groups. No deficits in pituitary GnRH receptors were observed in females nursing 2 pups on Day 10 postpartum. Removal of the 8-pup suckling stimulus for 24 or 48 h resulted in a dramatic increase in GnRH receptor capacity by 24 h from 120 +/- 16 to 355 +/- 39 fmol/mg protein. The rise in GnRH receptors after pup removal was accompanied by an increase in serum luteinizing hormone (LH) and estradiol concentrations. To assess the role of ovarian steroids in determining GnRH receptor capacity during lactation, females were ovariectomized (OVX) on Day 2 postpartum. Suckling of a large litter (8 pups) completely blocked the postcastration rise in serum LH and in pituitary GnRH receptors on Day 10 postpartum (OVX+ 8, 77 +/- 12 fmol/mg protein; OVX+ 0, 442 +/- 38 fmol/mg protein).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Binding of 3-[(+-)-2-carboxypiperazin-4-yl][3H]-propyl-1-phosphonic acid ([3H]CPP), a competitive inhibitor of N-methyl-D-aspartate (NMDA), has been studied in synaptic plasma membranes from rat cerebral cortex. Computer analysis of saturation and homologous displacement isotherms deriving from these plasma membranes indicated the existence of two binding sites: a specific, saturable, high-affinity binding site with a pKD value of 7.53 +/- 0.03 (29.5 nM) and a maximum binding value (Bmax) of 2.25 +/- 0.36 pmol/mg of protein, and a low-affinity site with a KD of approximately 600 nM and a Bmax of 7.0 pmol/mg of protein. It is argued that, in the light of current literature evidence, the low-affinity binding site may represent an agonist-dependent receptor, linked to physiological processes such as neurotransmitter release and channel regulation, whereas the high-affinity binding site may be linked to an antagonist-preferred receptor, for which no function has yet been reported.  相似文献   

11.
Specific, high affinity receptors for vasoactive intestinal peptide (VIP) have been identified on a human pre-B cell line, Nalm 6, and on a human plasma cell line, Dakiki. The single class of high affinity sites exhibited a KD of 12.6 +/- 2.9 nM for VIP in Nalm 6 cells and 9.1 +/- 2.7 nM in Dakiki plasma cells. The homologous peptides, peptide histidine methionine (PHM), growth hormone releasing factor (GHRF), and secretin were all less effective than VIP in competitively inhibiting binding of 125I-VIP to Nalm 6 and Dakiki plasma membranes. The putative receptor was characterized as a 47-kDa protein using covalent cross-linking techniques and VIP stimulated adenylate cyclase in pre-B cells. Human lymphocytes of B cell lineage thus appear to express functional VIP receptors homologous to the receptor identified in T lymphoblasts, brain, pituitary, and intestine.  相似文献   

12.
Microtubules assembled in vitro were bound to purified porcine pituitary secretory granules and to isolated granule membranes. The interaction between microtubules and whole secretory granules was demonstrated by alteration in the sedimentation properties of the microtubules. Incubation of secretory granules with microtubules resulted in pelleting of microtubules which increased as a function of the number of granules added. Binding was quantitated by measurement of the tubulin remaining in the supernate after centrifugation. The interaction of secretory granules and microtubules was inhibited by nucleoside triphosphates and augmented by adenosine 5'-monophosphate and adenosine. When depolymerized protein from microtubules was incubated with secretory granules, the granules did not appear to bind the soluble tubulin dimer present in these preparations. However, the high molecular weight protein associated with microtubules was adsorbed by secretory granules during the binding process. Incubation of isolated secretory granule membranes with microtubules followed by centrifugation to density equilibrium in a discontinuous sucrose density gradient caused pelleting of the membranes, which otherwise banded higher in the gradient. The visible alteration in membrane sedimentation was confirmed by measurements of the membrane-associated magnesium-ATPase activity and by a shift in radioactivity in iodinated membrane preparations. Our data suggest a role for microtubules in the intracellular movement of secretory granules; this movement is perhaps brought about by dynein-like cross bridges which link the tubulin backbone and granule surface.  相似文献   

13.
Frog, Rana esculenta, pituitary and testis gonadotropin-releasing hormone (GnRH) receptors were characterized by using 125I-chicken IIGnRH (cIIGnRH) as radiolabeled ligand. At 4 C equilibrium binding of 125I-cIIGnRH to pituitary homogenates was achieved after 90 min of incubation; binding of 125I-cIIGnRH to testis membrane fractions reached its maximum at 60 min of incubation. Binding of the radioligand was a function of tissue concentration, with a positive correlation over the range 0.5-2 tissue equivalents per tube. One pituitary and one testis per tube were used as standard experimental condition. Incubation of the pituitary homogenate with increasing concentrations of 125I-cIIGnRH indicated saturable binding at radioligand concentrations of 1 nM and above while for the testis membrane preparation saturation was achieved using 5 nM 125I-cIIGnRH. The binding of 125I-cIIGnRH was found to be reversible after addition of the cold analog and the displacement curves could be resolved into one linear component for both tissues. Scatchard analysis suggested the presence of one class of binding sites for both pituitary and testis (Pituitary: Kd = 1.25 +/- 0.14 nM and Bmax = 8.55 +/- 2.72 fmol/mg protein; testis: Kd = 2.23 +/- 0.89 nM and Bmax = 26.48 +/- 7.39 fmol/mg protein). Buserelin displaced the labeled 125I-cIIGnRH with a lower IC50 as compared with cIIGnRH cold standard, while Arg-vasopressin (AVP) was completely ineffective, confirming the specificity of binding.  相似文献   

14.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

15.
The relationship between gonadotropin-releasing hormone (GnRH) receptor binding and biological activity in the goldfish pituitary for mammalian and salmon GnRH (sGnRH) analogs with structural modification at the C terminus involving replacement of glycine amide with an alkyl amine and replacement of the Gly6 residue with D amino acids was examined. The GnRH receptor binding data were analyzed with a computerized curve-fitting program (LIGAND) for a single as well as two classes of binding sites; analysis based on one site fit estimated binding affinity and capacity for one class of binding site, and analysis based on two-site fit estimated binding affinity and capacity for two classes of binding sites (high-affinity/low-capacity and low-affinity/high-capacity binding sites). The estimated receptor affinity values were then used to determine the correlation between binding affinity and gonadotropin (GTH)-release potency in vitro. The highest correlation between biological activity and receptor binding affinity was obtained for the high-affinity/low-capacity binding sites and GnRH analogs containing Trp7 and Leu8 residues (i.e., the salmon GnRH structural format) (R = 0.940 +/- 0.150). For the same group of GnRH analogs, there was no significant correlation between the relative GTH-release potency and binding affinity of the low-affinity/high-capacity sites (R = 0.159 +/- 0.434), or that obtained from a one-site fit (R = 0.198 +/- 0.431). Similarly, for mammalian GnRH analogs, significant correlation between binding affinity and biological activity (R = 0.406 +/- 0.049) was only obtained for the high-affinity sites, although the degree of correlation was significantly lower than that obtained for salmon GnRH analogs. The present findings provide strong support for the hypothesis that high-affinity GnRH receptors are involved in the control of GTH release in the goldfish pituitary. In addition, the results demonstrate clearly that the presence of Trp7, Leu8 residues in salmon GnRH molecule, a native peptide in goldfish, is important for recognition of the ligand by the GnRH receptors in the goldfish pituitary, and that structural modifications at positions 6 and 10 in this peptide can increase receptor binding affinity and biological activity at the pituitary level. The most active sGnRH analog identified to date is [D-Arg6, Pro9-NEt]-sGnRH.  相似文献   

16.
Specific, high affinity binding sites for iodinated endothelin-1 ([125I]-ET-1) were identified in crude plasma and light membrane fractions harvested from aerobically perfused and ischaemic rat hearts, to determine whether the ischaemia-induced increase in binding site density (Bmax) involves externalization of the sites. In crude plasma membranes Bmax increased after 60 min ischaemia, from 113.5 +/- 2.15 to 180.6 +/- 4.67 fmol/mg protein (p less than 0.01). In the light membranes, the Bmax fell, from 94.7 +/- 8.70 to 63.80 +/- 6.26 fmol/mg protein (p less than 0.05). Hill coefficients and selectivity of both membrane fractions were unchanged. These results are interpreted as meaning that ischaemia causes externalization of cardiac [125I]-ET-1 binding sites.  相似文献   

17.
D Keinan  E Hazum 《Biochemistry》1985,24(26):7728-7732
On the basis of the spatial conformation of gonadotropin-releasing hormone (GnRH), we have predicted that aromatic amino acids and at least one carboxyl group are involved in the recognition site of the receptor. Therefore, various specific reagents were examined for their ability to interfere with the binding of GnRH to its receptor. Pretreatment of pituitary membrane preparations with sodium periodate decreased the specific binding in a dose-dependent manner (IC50 = 0.5 mM) due to a decrease in receptor affinity. This indicated the presence of a sugar moiety in the binding site. Tryptophan is another constituent that participates in the GnRH binding site, as pretreatment of pituitary membranes with 2-methoxy-5-nitrobenzyl bromide inhibited the binding (IC50 = 0.22 mM) by decreasing receptor affinity. In addition, the native hormone conferred on the binding site a protective effect against inactivation by 2-methoxy-5-nitrobenzyl bromide. Pretreatment of membranes with p-diazobenzenesulfonic acid also inhibited the binding of 125I-Buserelin (IC50 = 0.1 mM), indicating the presence of tyrosine within or near the binding site. Pretreatment of pituitary membrane preparations with dithiothreitol also inhibited the binding due to a decrease in the binding affinity, which was accompanied by an increase in receptor number. These data suggest that there are disulfide bonds within or near the binding region. Treatment with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and glycine ethyl ester also prevented binding in a dose-dependent manner and implies that free carboxylic groups are involved in the binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary To identify anterior pituitary cell types containing GnRH binding sites and to study the internalization process of this peptide by target cells under physiological conditions, autoradiography was performed on rat anterior pituitaries removed at specific time intervals (2–60 min) after intravenous injection of mono-radioiodinated 125I-GnRH into intact males. At electron-microscopic level, gonadotrophs and lactotrophs appeared to contain silver grains. Concomitant administration of an excess of unlabeled GnRH with the radioiodinated hormone prevented this localization indicating the specificity of the reaction. The time-course study in gonadotrophs showed that 2 min after injection silver grains could be found over the plasma membrane, secretory granules and nuclear membrane. Similar results were observed 5 and 15 min after injection. Extensive label was observed over the nucleus and nuclear membrane 15 to 60 min after injection. The injection of a radioiodinated GnRH agonist [D-Trp6, Pro9 (Net), DesGly10]-GnRH produced comparable results. In contrast, the injection of 125I-[D-pGlu1, D-Phe2, Trp3,6]-GnRH, an antagonist of GnRH, produced positive labeling only at the plasma membrane without internalization. These results indicate that, after binding with receptors on the plasma membrane, GnRH is rapidly internalized, accumulating in secretory granules, and localizing over the nuclear membrane and later, in the nucleus. Association of radioactivity with secretory granules could be related to a specific action of GnRH at this level or to receptor recycling, and presence of label in the nucleus may be related to stimulation of neosynthesis of LH and GnRH receptors.  相似文献   

19.
There is good evidence that high density lipoprotein (HDL) interacts with high affinity sites present on hepatocytes. The precise nature of the ligand recognized by putative HDL receptors remains controversial, although there is a consensus that apolipoprotein AI (apoAI) is involved. This suggestion would be strengthened if a biologically active site demonstrating a high affinity for the receptor could be isolated. Cyanogen bromide fragments (CF) of apoAI (CF1-CF4) were complexed with phospholipid, and their ability to associate with the receptor was compared in various binding studies. Careful analysis of the concentration-dependent association of 125I-labeled dimyristoyl phosphatidylcholine (DMPC) recombinants to rat liver plasma membranes revealed high and low affinity binding components. As all DMPC recombinants displayed the low affinity binding component, it was postulated that this interaction was independent of the protein present in the particle and may well represent a lipid-lipid or lipid-protein association with the membranes. Only 125I-labeled CF4.DMPC displayed a high affinity binding component with similar Kd and Bmax (8 x 10(-9) M, 1.6 x 10(-12) mol/mg plasma membrane protein) to that of 125I-labeled AI.DMPC (7 x 10(-9), 1.4 x 10(-12) mol/mg plasma membrane protein). Similarly, egg yolk phosphatidylcholine complexes containing CF4 (CF4.egg PC) showed higher affinity binding than CF1-egg yolk phosphatidylcholine complexes confirming the results obtained with DMPC complexes. Furthermore, ligand blotting studies showed that only 125I-labeled CF4.DMPC associated specifically with HB1 and HB2, two HDL binding proteins recently identified in rat liver plasma membranes. We conclude that a region within the carboxyl-terminus of apoAI is responsible for the interaction with putative HDL receptors present in rat liver plasma membranes.  相似文献   

20.
A simple method for preparing plasma membranes from bovine testes is described. Bovine testicular receptor has a high affinity and specificity for 125I-labelled human FSH (follicle-stimulating hormone). The specific binding of 125I-labelled human FSH to the plasma membranes is a saturable process with respect to the amounts of receptor protein and FSH added. The association and dissociation of 125I-labelled human FSH are time- and temperature-dependent, and the binding of labelled human FSH to bovine testicular receptor is strong and not readily reversible. Scatchard [Ann. N.Y. Acad. Sci. (1949) 51, 660-672] analysis indicates a dissociation constant, Kd, of 9.8 X10(-11)M, and 5.9 X 10(-14)mol of binding sites/mg of membrane protein. The testicular membrane receptor is heat-labile. Preheating at 40 degrees C for 15 min destroyed 30% of the binding activity. Specific binding is pH-dependent, with an optimum between pH 7.0 and 7.5. Brief exposure to extremes of pH caused irreversible damage to the receptors. The ionic strength of the incubation medium markedly affects the association of 125I-labelled human FSH with its testicular receptor. Various cations at concentrations of 0.1M inhibit almost completely the binding of 125I-labelled human FSH. Nuclectides and steroid hormones at concentrations of 1mM and 5mu/ml respectively have no effect on the binding of FSH to its receptor. Incubation of membranes with and chymotrypsin resulted in an almost complete loss of binding activity, suggesting that protein moieties are essential for the binding of 125I-labelled human FSH. Binding of 125I-labelled human FSH to bovine testicular receptor does not result in destruction or degradation of the hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号