首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Shiga toxin (Stx) is internalized by receptor-mediated endocytosis and transported retrogradely to the endoplasmic reticulum from where the enzymatically active part of the toxin is translocated to the cytosol. In this study, we have investigated the effect of polyunsaturated fatty acids (PUFA) on intoxication and retrograde transport of Stx. In HEp-2 cells, PUFA treatment inhibited Stx intoxication by a factor of 10. Moreover, both Stx internalization and endosome-to-Golgi transport were reduced by PUFA and these reductions can together explain the reduced toxicity. Also cholera toxin internalization was reduced by PUFA treatment. Finally, ricin and Pseudomonas exotoxin 1 cytotoxicity were not reduced by PUFA, demonstrating that PUFA do not cause a general block in retrograde transport to the endoplasmic reticulum. In conclusion, these results clearly demonstrate the importance of PUFA for Stx and cholera toxin trafficking.  相似文献   

2.
Internalization and traffic to acidic endosomes of anthrax lethal factor (LF) and protective antigen (PA), bound to the anthrax toxin receptor (ATR), is required for LF translocation into the cytosol, where it can elicit its toxic effects. Dynamin is required for clathrin-mediated endocytosis, and long-term disruption of dynamin function blocks internalization of PA. We have used LFn-DTA, a surrogate of LF consisting of the N-terminal domain of LF fused to the catalytic subunit of diphtheria toxin, to differentiate the effects of acute and long-term block of dynamin function on LFn-DTA toxicity. Both forms of interference reduce LFn-DTA toxicity only partially, consistent with alternative routes for LFn-DTA endocytosis. In contrast, a long-term block of dynamin activity results in a further interference with LFn-DTA toxicity that is consistent with an altered endosomal environment, probably an increase in endosomal pH.  相似文献   

3.
Today it is generally accepted that there are several endocytic mechanisms, both the clathrin-dependent one and mechanisms which operate without clathrin and with different requirements when it comes to dynamin, small GTP-binding proteins of the Rho family and specific lipids. It should be noted that clathrin-independent endocytosis can occur even when the cholesterol level in the membrane has been reduced to so low levels that caveolae are gone and clathrin-coated membrane areas are flat. Although new investigators in the field take it for granted that there is a multitude of entry mechanisms, it has taken a long time for this to become accepted. However, more work needs to be done, because one can still ask the question: How many endocytic mechanisms does a cell have, what are their function, and how are they regulated? This article describes some of the history of endocytosis research and attempts to give an overview of the complexity of the mechanisms and their regulation.  相似文献   

4.
Pathways followed by ricin and Shiga toxin into cells   总被引:16,自引:5,他引:16  
The plant toxin ricin and the bacterial toxin Shiga toxin belong to a group of protein toxins that inhibit protein synthesis in cells enzymatically after entry into the cytosol. Ricin and Shiga toxin, which both have an enzymatically active moiety that inactivates ribosomes and a moiety that binds to cell surface receptors, enter the cytosol after binding to the cell surface, endocytosis by different mechanisms, and retrograde transport to the Golgi apparatus and the endoplasmic reticulum (ER). The toxins can be used to investigate the various transport steps involved, both the endocytic mechanisms as well as pathways for retrograde transport to the ER. Recent studies show that not only do several endocytic mechanisms exist in the same cell, but they are not equally sensitive to removal of cholesterol. New data have revealed that there is also more than one pathway leading from endosomes to the Golgi apparatus and retrogradely from the Golgi to the ER. Trafficking of protein toxins along these pathways will be discussed in the present article.  相似文献   

5.
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.  相似文献   

6.
The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN).  相似文献   

7.
Charge heterogeneity of cholera toxin and its subunits   总被引:1,自引:0,他引:1  
Abstract Analytical isoelectric focusing (IEF) in thin layers of polyacrylamide gels resolved cholera toxin into 3 isomeric forms differing in charge (isoelectric points 6.80, 6.65 and 6.55). All these forms had identical molecular weights, and were also antigenically similar, as demonstrated by their reactivity to antisera to cholera toxin. Both the B and A subunits possessed charge heterogeneity. The B subunit was detected in a free form when a solution of cholera toxin was aged for a few days. Antisera to cholera toxin, irrespective of mode of immunisation, contained antibodies to both the intact cholera toxin and the free B subunit as demonstrated by the immunoblotting technique based on IEF.  相似文献   

8.
Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37°C, ultrastructural studies on cryosections failed to detect B-fragment–specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor–containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN.  相似文献   

9.
志贺毒素(Shigatoxin,Stx)主要由肠出血性大肠杆菌(EHEC)产生,是其主要的致病毒力因子,可通过引起急性肾衰竭导致死亡。迄今为止尚没有可推荐的治疗方案能够有效地预防或治疗Stx引起的疾病。目前,对于Stx的研究热点主要包括:Stx尚未清楚的致病机理研究,Stx与HUS的相关性研究,以及预防、治疗由Stx引起的疾病的研究。本文就以上几方面对国内外的相关研究进行总结及讨论。  相似文献   

10.
霍乱毒素B亚单位(CTB)在大肠杆菌表达体系中不能实现良好的分泌性表达。本文拟利用ctxb的自身启动子来实现CTB的高效分泌性表达。PCR方法扩增ctxb的调控序列和结构基因,克隆至pGEM-T载体,并在其下游链上肠杆菌核糖体基因的转录终止信号rmBT1T2,构建的表达质粒pGEM-T48和霍乱弧菌IEM101都实现了CTB的分泌性表达。但在pGEM-T48*TEM101)中CTB的分泌性表达量明显高于pGEM-T48(JM109)中的量,两者比较为50:1。因此,pGEM-T48(IEM101)表达体系较为理想的CTB分泌性表达体系。  相似文献   

11.
Cholera toxin, through adenylate cyclase activation reproduced cyclic AMP-mediated effects of thyroid-stimulating hormone (TSH) in dog thyroid slices, i.e protein iodination, [1-14C]glucose-oxidation and hormone secretion. Iodide and carbamylcholine decreased the cyclic AMP accumulation induced by cholera toxin as well as by TSH, which supports the hypothesis of an action of these agents beyond the steps of hormone-receptor and receptor-adenylate cyclase interaction. Cooling to 20°C did not impair the TSH induced cyclic AMP accumulation in thyroid slices, but completely suppressed the cholera toxin effect.This observation has been extended to other hormones and target tissues, such as the parathyroid hormone (PTH) (kidney cortex), adrenocorticotropic hormone (ACTH) (adrenal cortex)_and luteinizing hormone (LH) (ovary systems). As in thyroid, cooling dissociated the cholera toxin and hormonal effects on cyclic AMP accumulation. In homogenate, cooling decreased cyclic AMP generation in the presence of cholera toxin but at 20°C and 16°C a cholera toxin stimulation was still observed. These results bear strongly against the hypothesis that the glycoprotein hormones TSH and LH activate adenylate cyclase by a mechanism identical to cholera toxin.  相似文献   

12.
志贺毒素(Shigatoxin,Stx)主要由肠出血性大肠杆菌(EHEC)产生,是其主要的致病毒力因子,可通过引起急性肾衰竭导致死亡。迄今为止尚没有可推荐的治疗方案能够有效地预防或治疗Stx引起的疾病。目前,对于Stx的研究热点主要包括:Stx尚未清楚的致病机理研究,Stx与HUS的相关性研究,以及预防、治疗由Stx引起的疾病的研究。本文就以上几方面对国内外的相关研究进行总结及讨论。  相似文献   

13.
猪水肿病毒素Stx2e的致Vero细胞凋亡作用   总被引:2,自引:0,他引:2  
摘要:【目的】研究猪水肿病的致病因子志贺毒素2e(Shiga toxin 2e, Stx2e)的致病机理。【方法】以AO/EB荧光染色法、琼脂糖凝胶电泳法和Western blot等方法研究Stx2e对Vero细胞的致凋亡作用及其信号途径。【结果】从细胞形态学和染色质水平证明,Stx2e 能诱导Vero细胞凋亡,并表现出时间和浓度依赖性;同时引起caspase-3表达量明显上调,Bax、caspase-9的表达量没有明显变化。【结论】Stx2e对Vero细胞的致凋亡作用主要通过膜受体通路引起,线粒体信号通路所起的作用较小。  相似文献   

14.
Abstract The immunological properties of Campylobacter jejuni enterotoxin (CJT) and cholera toxin (CT) were compared by enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis with antiserum against each toxin. Antibody against CJT recognized the 68, 54 and 43 kDa polypeptides of CJT and the 11 kDa subunit of CT, whereas antibody against CT recognized the 68 and 54 kDa polypeptides of CJT and 11 kDa subunit of CT. The immunological reactions between the heterogenous combinations of toxins and the antibodies were weaker than those between the homogenous systems. Thus, different antigenicity was found in CJT and CT at the subunit level, although they possessed cross-reactive epitope(s). The binding of CJT and CT to gangliosides was also examined. CJT and CT bound to GM1 ganglioside preferentially than to other ganglioside species. However, CJT did not bind to GD1b in spite of the fact that CT preferred GD1b. This suggests that both toxins recognize different receptors on the surface of the target cell. This study is the first demonstration of the different properties between CJT and CT in immunological character and ganglioside recognition.  相似文献   

15.
16.
A rapid and sensitive two‐step time‐resolved fluorescence immunoassay (TRFIA) was developed for the detection of Shiga toxin 2 (Stx2) and its variants in Shiga toxin‐producing Escherichia coli (STEC) strains. In sandwich mode, a monoclonal antibody against Stx2 was coated on a microtiter plate as a capture antibody. A tracer antibody against Stx2 labeled with europium(III) (Eu3+) chelate was then used as a detector, followed by fluorescence measurements using time‐resolved fluorescence. The sensitivity of Stx2 detection was 0.038 ng/ml (dynamic range, 0.1–1000 ng/ml). The intra‐ and inter‐assay coefficients of variation of the assay were 3.2% and 3.6%, respectively. The performance of the established assay was evaluated using culture supernatants of STEC strains, and the results were compared to those of a common HRP (horseradish peroxidase) labeling immunosorbent assay. A polymerase chain reaction (PCR) for the detection of genes encoding Stx1 and Stx2 was used as the reference for comparison. Correlation between the Stx2‐specific TRFIA and PCR was calculated by the use of kappa statics, exhibiting a perfect level of agreement. The availability of the sensitive and reliable Stx2‐specific TRFIA method for quantifying Stx2 and its variants in STEC strains will complement bacteria isolation‐based platform and aid in the accurate and prompt diagnosis of STEC infections.  相似文献   

17.
Nucleotide sequence comparisons of the heat-labile enterotoxin (LTh) genes of E. coli pathogenic for humans with cholera toxin (CT) genes suggest that the two toxin genes have evolved from a common ancestry by a series of single base changes, while conserving the catalytic fragment A1 (ADP-ribose transferase). Based on the local hydrophilicity profiles of LTh and CT peptides, a transmembrane segment appears to be present in A1 in both toxins.  相似文献   

18.
采用间接酶联免疫法,即用神经节苷脂包被,加入待检样品,再加入兔抗霍乱毒素B亚单位抗体,用标准样品的吸光值(A值)对标准样品的浓度绘制4-参数拟合曲线,根据标准曲线计算出待测样品中的CT浓度。结果显示,在浓度范围(0.6~16)ng/ml之间,CT标准浓度和检测浓度成线性关系,r2=0.9986。精确度在浓度范围(0.6~16)ng/ml,CT的平均回收率在96.24%~114.44%之间。精密度:批内变异CV%≤12.98%,批间变异CV%≤18.48%。特异性CT浓度在10ng/ml时,平均回收率为102.6%;CT浓度在5ng/ml时,平均回收率为111.17%;CT浓度在2.5ng/ml时,平均回收率为123.83%。实验表明该方法可检测霍乱疫苗原液中CT的含量。  相似文献   

19.
Shiga toxin has a protease-sensitive site in the disulfide loop region of the A-chain. Cleavage of this site by furin is essential for rapid intoxication of cells by Shiga toxin. We have here investigated whether in addition to the Arg-X-X-Arg sequence, there are other structural requirements in the disulfide loop region for furin cleavage. A toxin mutant (Shiga-2D toxin) still containing the consensus motif for cleavage by furin, but lacking ten amino acids in the disulfide loop, was generated. Trypsin was able to cleave Shiga-2D toxin in vitro, demonstrating that the protease-sensitive region is intact. However, Shiga-2D toxin was not efficiently cleaved by furin either in vitro or in vivo. Furthermore, unless it was precleaved with trypsin, Shiga-2D toxin was much less toxic than wild type Shiga toxin in LoVo cells expressing functional furin. In contrast, LoVo/neo cells lacking functional furin were unable to activate both wild type Shiga toxin and Shiga-2D toxin. In conclusion, an extended loop structure is required for furin-induced cleavage of Shiga toxin.  相似文献   

20.
Lipids are hydrophobic molecules which play critical functions in cells, in particular, they are essential constituents of membranes, whereas bacterial toxins are mainly hydrophilic proteins. All bacterial toxins interact first with their target cells by recognizing a surface receptor, which is either a lipid or a lipid derivative, or another compound but in a lipid environment. Most bacterial toxins are PFTs (pore-forming toxins) which oligomerize and insert into the lipid bilayer. A common mechanism of action involves the formation of a beta-barrel structure, resulting from the assembly of individual beta-hairpin(s) from individual monomers. An essential step for intracellular active toxins is to translocate their enzymatic part into the cytosol. Some toxins use a translocation mechanism based on pore formation similar to that of PFTs, others undergo a yet unclear 'chaperone' process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号