首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the distribution of the molecular forms of acetylcholinesterase (AChE) in a stable variant (F3) of the rat pheochromocytoma cell line, PC12, that lacks a heparan sulfate proteoglycan on the cell surface. After treatment with nerve growth factor F3 cells synthesize less 4S enzyme, and more 10S and 16S enzyme than normal PC12 cells. This distribution is similar to that seen in normal cells after incubation with beta-D-xylosides, molecules that interfere with proteoglycan assembly. Using collagenase treatment and membrane-permeable and -impermeable inhibitors of AChE, we determined the cellular location of the AChE forms. Although in normal cells greater than 90% of the 16S AChE is on the cell surface, approximately 60% is present in an internal pool in the variant. Following irreversible inhibition of all forms of AChE in the variant, the newly synthesized 16S AChE appears in the internal pool after a 1-h lag, but is not detected on the cell surface until after 2.5 h. Our results thus show that 16S AChE is assembled internally within neuronal cells and that alterations in the synthesis and distribution of proteoglycans affect the total amount and cellular localization of the 16S AChE form.  相似文献   

2.
Rat obturator nerve 16S acetylcholinesterase (16S AChE) was separated by sucrose gradient velocity sedimentation and compared to the 16S form of AChE similarly derived from endplate regions of anterior gracilis muscles. The 16S AChE from both tissues could only be extracted in high ionic strength buffer; as it aggregated under low ionic strength conditions. Treatment of nerve and muscle 16S AChE with purified collagenase, in the presence of calcium, caused an identical shift in the enzyme's sedimentation coefficient to 17.5S. Other properties which were also equivalent for 16S AChE from both tissue sources included: an excess substrate inhibition above 2×10–3 M acetylcholine andK m of 1.6×10–4 M, relative sensitivity to the specific inhibitors BW284C51 (I50 of 5×10–8 M) and Iso-OMPA (I50 of 5×10–4 M), and a half maximal thermal inactivation at 62.5°C. These and additional results indicate that the 16S forms of AChE in both tissues are analogous molecules, which have a highly asymmetric conformation probably containing a collagen-like domain. The present findings are also consistent with the view that motor neurons provide at least a fraction of the 16S AChE present at the neuromuscular junction.  相似文献   

3.
Axonal transport of the 16S Molecular form of acetylcholinesterase (16S-AChE) in doubly ligated rat sciatic nerves was studied by means of velocity sedimentation analysis on sucrose gradients. This form of AChE was selectively confined to motor, and not to sensory, fibers in the sciatic nerve, where it represented 3--4% of total AChE. Its activity increased linearly with time (4--20 hr) in nerve segments (7 mm) proximal to the central ligature (4.5 mU/24hr) and distal to the peripheral ligature (2.0 mU/24 hr). From the linear rates of accumulation of 16S-AChE, we conclude that the enzyme is conveyed by anterograde and retrograde axonal transport at velocities close to those previously defined for the movement of total AChE (410 mm/day, anterograde; 220 mm/day, retrograde). The transport of AChE molecular forms, other than the 16S form, could not be resolved presumably due to their presence in blood as well as at extraaxonal sites. The present findings are consistent with the view that in rat sciatic nerve most, if not all, of the small portion of total AChE (approximately 3%) which is transported may be accounted for by 16S-AChE.  相似文献   

4.
Experimental denervation of adult mouse sternocleidomastoid muscle results in a decrease in total AChE. The most rapid change essentially affects the tailed, asymmetric 16 S AChE, since one day after nerve section, “16S” AChE is already significantly decreased to about 70% of its control value. We found that both background and junctional “16S” AChE are affected by this rapid decrease. Later, a sharp fall in “10S” and “4S” AChE occurs about seven days after denervation when muscle atrophy develops with loss of weight and proteins. A gaussian analysis of the sedimentation profiles of AChE extracted from denervated muscle shows that there is not only an early rapid decrease in 16 S AChE but also a decrease in the monomeric 3.3S AChE. This result suggests that there is a very rapid turn-over of two molecular forms of AChE, the supposedly monomeric precursor and the complex asymmetric 16S AChE.  相似文献   

5.
Abstract— In sucrose gradient centrifugation, acetylcholinesterase (AChE, EC 3.1.1.7.) from the rat superior cervical ganglion (SCG) has been found to contain four molecular forms, characterized by their sedimentation coefficients (4 S, 6.5 S, 10 S and 16 S). Homogenization of the ganglia in various media showed that the 4 S enzyme was readily solubilized in water whereas solubilization of the 6.5 S and 10 S forms was quantitative only in media containing Triton X-100. In order to solubilize the 16 S form, high concentrations of salt (NaCl 1 M) and detergent had to be present. AChE analysed by non-denaturing polyacrylamide gel electrophoresis separated into five bands. Although both distribution patterns were stable, i.e. each form or band preserved its characteristic sedimentation or electrophoretic migration when reanalysed, there was no 1:1 correlation between the forms isolated by sedimentation and the bands obtained by electrophoresis: one band might contain more than one form of enzyme, and conversely one form gave rise to several bands. It was therefore impossible to derive molecular weights from electrophoretic migration in non-denaturing gels. However, it could be shown that the results obtained by both methods of analysis were consistent. Acetylcholinesterase from other nervous structures was analysed: in pre- and postganglionic nerves, the main forms were 10 S and 6.5 S, with a small proportion of 4 S; the 16 S form was not detected. In other sympathetic ganglia, the distribution of forms was identical to that of the superior cervical ganglion. In rachidian ganglia, no 16 S form could be found. Following the section of the preganglionic nerve, the acetylcholinesterase activity of the superior cervical ganglion decreased by 50% in 3 days, and then rose again to about 80% of its original value after 2 weeks. These effects mainly reflected variations in the major 4 S and 10 S forms. The 16 S form, in contrast to its disappearance from denervated muscles, increased transiently during the first 2 weeks after denervation, reaching about twice its original activity. A concomitant cytochemical study of normal and denervated ganglia showed that after preganglionic denervation, AChE localized in the sympathetic neurones decreased markedly and remained low even during the recovery phase. During this period a cholinesterasic activity appeared in the perineuronal glia. Controls established that the enzyme synthetized in the glia is AChE.  相似文献   

6.
Abstract: The formation of ectopic junctions between the foreign fibular nerve and the soleus muscle of young (35-day-old) and mature (200-day-old) adult rats was induced by severing the normal nerve 4 weeks after implanting the foreign nerve. The various molecular forms of ace-tylcholinesterase (AChE) were studied both at the implanted region and at the original denervated endplates. The velocity of contraction was also studied. In young rats the 16S form was first detected in the ectopic junctions around day 5 after reinnervation; this form rapidly increased during the following weeks, reaching a plateau by day 20. By contrast, in mature rats the appearance of the 16S AChE was dramatically delayed; in fact, it could not be observed before day 80 after reinnervation. (The 16S AChE form appeared at day 20 after reinnervation in the original denervated endplates of young rats; however, at the same time, no effect was observed in mature animals.) The original, slow muscle fibers of the soleus became faster upon reinnervation; this change occurred also much earlier in younger than in mature rats. Our results indicate a loss of plasticity in the skeletal muscle of mature rats. We suggest caution in the use of the ectopic innervation model to study development in mature adult rats.  相似文献   

7.
CELLULAR DISTRIBUTION OF 16S ACETYLCHOLINESTERASE   总被引:12,自引:12,他引:0  
Multiple molecular forms of acetylcholinesterase (AChE; EC 3.1.1.7), in crude extracts of various tissues from the rat, were distinguished by velocity sedimentation analysis on linear sucrose gradients. Skeletal muscle samples containing end-plate regions showed three different forms of AChE with apparent sedimentation coefficients of 16, 10 and 4s. The 16s form was not detected in non-innervated regions of skeletal muscle, large intestine smooth muscle, whole brain tissue, red blood cells or plasma. Spinal cord, a predominantly motor cranial nerve and mixed (sensory and motor) peripheral nerves contained 16, 10, 6.5 and 4S AChE. Ventral motor roots, supplying the sciatic nerve, contained these four forms of the enzyme, while corresponding dorsal sensory roots were devoid of the 16S form. The 16s-AChE confined to ventral roots can be attributed totally to motor neurons and not to Schwann cells composing these roots. Whether the 16s-AChE presently found in motor nerves has chemical identity with that found at motor end-plates is the basis of future experiments.  相似文献   

8.
A comparative study of the molecular forms of acetylcholinesterase (AChE) was made in various smooth muscles (intestine, vas deferens, ciliary body, iris, nictitating membrane retractor, ureter, arteries, anococcygeus muscles) of some mammals (cat, guinea-pig, rat, rabbit, mouse), seeking for a correlation between the presence of 16 S (asymmetric, tailed) form of AChE in smooth muscles and their type of innervation defined by morphological criteria, as well as by the nature of the main neurotransmitters involved in their neuroeffector junctions. Contrary to previous assertions, many smooth muscles contain 16 S AChE, although all those examined here exhibited a proportion clearly less than that of striated muscles. There are large species-specific and individual variations in the percentage of 16 S AChE. The highest percentages of 16 S AChE were found in ciliary and iris muscles, which are provided with an individual (= multiunit) cholinergic innervation. The vas deferens muscles, which are also individually, but noradrenergically innervated contain practically no 16 S AChE. In the muscles having a fascicular (= unitary) innervation, the differences are striking: 16 S AChE is in rather high amount in intestine muscle layers, whereas it is very low or virtually absent in ureter or arterial muscles. Thus, the type of innervation is not clearly involved in the amount of 16 S AChE present in smooth muscles. As for the nature of neurotransmitter a clear correlation exists only in the case of individual innervation, in which only one neurotransmitter is involved or largely predominant.  相似文献   

9.
Acetylcholinesterase (AChE; EC 3.1.1.7) activity and the distribution of its molecular forms were studied in the nervous system of normal and dystrophic 129/ReJ mice, including the sciatic-tibial nerve trunk and motor nerves to slow- and fast-twitch muscles. In normal mice, motor nerves to the slow-twitch soleus exhibited a low AChE activity together with a low level of G4 (10S form) as compared with nerves of the predominantly fast-twitch plantaris and extensor digitorum longus. In contrast, in dystrophic mice, the AChE activity as well as the G4 content of nerves to the fast-twitch muscles were low, displaying an AChE content similar to that of the nerve of the soleus muscle. In the sciatic-tibial nerve trunk, the AChE activity decreased along the nerve in an exponential mode, at rates that were similar in both conditions. However, in dystrophic mice, the AChE activity was reduced throughout the nerve length by a constant value of approximately 180 nmol/h/mg protein. Further analyses indicated that AChE in this nerve trunk was distributed among two compartments, a decaying and a constant one. The decay involved exclusively the globular forms. The activity of A12 (16S form) remained constant along the nerve and was similar in both normal and dystrophic mice. In addition, according to the equation describing the decay of AChE, the reduction in enzymatic activity observed in the dystrophic mice affected mainly G4 in the constant compartment. Brain, spinal cord, sympathetic ganglia, and serum, which were also examined, showed no remarkable differences between the two conditions in their G4 content. The AChE abnormalities that we found in nervous tissues of 129/ReJ dystrophic mice were confined to the motor system.  相似文献   

10.
In adult rat sternocleidomastoid muscle, AChE is concentrated in the region rich in motor end-plates (MEP). All major AChE forms, "16 S," "10 S," and "4 S," are accumulated at high levels, and not only "16 S" AChE. After denervation, muscle AChE decreases; 2 weeks after denervation, low levels (20-40% of control) are reached for all forms. During the following weeks, a slow but steady increase in "10 S" and "16 S" AChE occurs in the denervated muscle. At this stage, all forms are again observed to be highly concentrated in the region containing the old sites of innervation. Thus, in adult rat muscle the structures able to accumulate "16 S," "10 S," and "4 S" AChE in the MEP-rich regions remain several months after denervation. In normal young rat sternocleidomastoid muscle at birth, all AChE forms are already accumulated in the MEP-rich region. After denervation at birth, the denervated muscle loses its ability to keep a high concentration of "4 S," "10 S," and "16 S" AChE in the old MEP-rich region. All AChE forms are still present 1 month after denervation, but they are decreased and diffusedly distributed over the whole length of the muscle. In particular, "16 S" AChE is detected in the same proportion (10-15%) all along the denervated muscle. Thus, the diffuse distribution of AChE, and especially "16 S" AChE, after neonatal denervation, contrasts with the maintained accumulation observed in adult denervated muscle. It seems that denervation of young muscle results in a specific loss of the muscle ability to concentrate high levels of all AChE forms at the old sites of innervation.  相似文献   

11.
Most of mouse diaphragm muscle acetylcholinesterase (AChE) is irreversibly inhibited after a single intraperitoneal injection of a methyl-phosphorothiolate derivative (MPT), an organophosphorus compound which phosphorylates the active site. The muscle recovers its AChE (de novo synthesis) and we studied the time course of reappearance of AChE and its multiple active molecular forms. After inhibition, there is an initial (3 to 15 hr) rapid recovery of total AChE (which evolves from 20-28% to 50-60% of the control values), followed by a slow phase of AChE return. After 3 days, the recovery is still incomplete (reaching 70-80% of control values). Among the main molecular forms present in diaphragm muscle (16 S, 10 S and 4 S, accompanied by minor components), the 16 S and 10 S forms are the most sensitive to MPT treatment. During the rapid initial phase of AChE recovery, the absolute rate of recovery of the 4 S form is faster than for the other forms with a correspondingly much higher relative proportion to total AChE. These observations are consistent with the hypothesized precursor role of the 4 S form. The 16 S form, which is found concentrated in the motor end-plate (MEP)-rich regions and in low amounts in MEP-free regions, is similarly partially recovered in both regions, suggesting that there is 16 S biosynthesis not only in the MEP-rich regions but also in the MEP-free regions.  相似文献   

12.
A biochemical analysis has been performed on the relationship between the receptors for Dolichos biflorus agglutinin (DBA) and collagen tailed acetylcholinesterase (16S AChE) in mouse skeletal muscle. The molecular forms of AChE were separated by differential salt extraction and by gradient centrifugation. DBA binding activity was measured using a microtiter plate binding assay and affinity chromatography. The 16S form of AChE was bound to DBA, whereas globular forms of AChE were not. However, only a small proportion of 16S AChE was capable of binding to DBA, and most of the DBA binding capacity in muscle extracts was not associated with the 16S AChE. The possible association with the neuromuscular synapse of DBA binding molecules other than 16S AChE is discussed with respect to our previous histochemical study on DBA binding sites in mouse muscle.  相似文献   

13.
Acetylcholinesterase (AChE) polymorphism was studied in the sciatic nerve of 4-week-old Leghorn chicks, by sucrose gradient sedimentation analysis. Four main AChE molecular forms were found with sedimentation coefficients of 5S, 7.5S, 11.5S and 20S respectively. Axonal transport of each of these forms was investigated on the basis of the enzyme accumulation kinetics measured on both sides of nerve transections and of the enzyme redistribution kinetics in nerve segments isolated in vivo. After nerve transection, 11.5S and 20S forms accumulated faster in the anterograde than in the retrograde direction and also much faster than 5S and 7.5S forms in the anterograde direction. Retrograde accumulations of 5S and 7.5S were faint or negligible. In addition, 1 h after nerve cutting, the accumulation rates for 11.5S and 20S forms (but not for 5S and 7.5S) fell, in both directions, to about one-third of their initial values, probably owing to reversal of axonal transport at the axotomy site. Local protein synthesis inhibition by cycloheximide did not affect the accumulation of 11.5S and 20S in front of a transection, at least during the first hours, but reduced that of 5S and 7.5S by about 40%. In isolated nerve segments in vivo, the rapidly mobile fraction of AChE was estimated to constitute 23% of the total enzyme activity present in the nerve, 14% of it moving in an anterograde and 9% in a retrograde direction. A small amount of 11.5S molecules (approx. 20%) was in rapid transit (two-thirds in the anterograde and one-third in the retrograde direction), whereas almost all the 20S--about 90%--migrated rapidly (two-thirds forwards and one-third backwards). Anterograde velocities of 408 +/- 94 and 411 +/- 161 mm/day respectively were estimated for the 11.5S and 20S forms. Their respective retrograde velocities were 175 +/- 85 and 145 +/- 107 mm/day. Assuming that the totality of 5S and 7.5S molecules are moving in the anterograde direction, their accumulation rates were consistent with the average anterograde velocities of 2.9 +/- 1.3 and 5.1 +/- 1.4 mm/day, respectively.  相似文献   

14.
Abstract The activities of the various molecular forms of acetylcholinesterase (AChE) were measured in monolayer cultures of neonatal rat pineal cells grown alone and in co-culture with sympathetic neurons. AChE forms characterized by sedimentation coefficients of 4S, 6.5S, and 10S were found in the neuronal and pineal cultures, as well as in the co-cultures. The 16S AChE form was found only in the neuronal cultures. Total AChE activity increased with culture age in the co-cultures, but it decreased in pineal cells cultured alone. The low level of activity present in the neuronal cultures did not change markedly over the 27-day culture period. These results, which show bidirectional neuron-pineal cell effects, suggest that AChE molecular forms may be important markers to study the mechanisms underlying neuron-target cell interaction in the developing sympathetic nervous system.  相似文献   

15.
The effects of rat obturator nerve extracts on total and 16S acetylcholinesterase (AChE) activity were studied in endplate regions of denervated anterior gracilis muscles maintained in organ culture for 48 hr. The decrease of total AChE activity in cultured muscles was similar to that observed in denervated muscles in vivo. This decrease in activity was partly prevented by addition of either 100 or 200 μl nerve extract (2.7 mg/ml protein) to the nutrient medium. Nerve extract treatment also decreased the release of AChE activity from the muscle into the bathing medium. Conversely, rat serum (20 μl; 90 mg/ml protein) had no effect on total AChE activity in muscle endplates, nor on release of the enzyme by the muscle. The 16S form of AChE was confined to motor endplate muscle regions and its activity was drastically decreased by denervation in both organ culture and in vivo preparations in a comparable manner. Nerve-extract supplemented cultures contained a significantly (p ? 0.001) larger amount of endplate 16S AChE activity (140–145%) than the corresponding controls (100-). Our results suggest that some nerve soluble substance, other than serum contaminants or 16S AChE itself, affects the maintenance of 16S AChE at the neuromuscular junction.  相似文献   

16.
The four principal molecular forms of acetylcholinesterase characteristic of the mammalian muscle (16.1 S., 12.5 S, 10.2 S, and 3.6. S) were identified by sucrose gradient sedimentation as the four activity peaks H, H1, M and L.After denervation obtained by crushing the sciatic nerve five stages of the denervation-reinnervation process were examined. Days 7, 14, 22, 30, and 60 were chosen on the basis of previous electrophysiological and histochemical studies. The AChE activity showed an initial drop followed by recovery after nerve arrival at the muscle which was completed by day 60. Marked changes in the relative proportions of the four molecular forms were observed. The 16.1 S almost disappeared during the denervation period, reappeared after nerve arrival and was completely restored at day 60. Changes were also observed in the intermediate and lower forms and were tentatively related to processes of degradation, reaggregation and de novo synthesis.A comparison of the present data with those from parallel electrophysiological and histochemical studies suggests the presence and the functional role of molecular forms other than 16S in the neuromuscular junction.  相似文献   

17.
Endplate 16S acetylcholinesterase (16S-AChE) from rat anterior gracilis muscle was assessed, 6 hr to 10 days after denervation, by velocity sedimentation analysis on linear sucrose gradients. The innervating obturator nerve was transected either close (1-2 mm, short stump) or far (35-40 mm, long stump) from the muscle. In both instances, the activity of 16S-AChE gradually decreased and reached approximately the same level (10%-20% of control) by 6 days after denervation. However, enzymatic decay started considerably earlier in short stump (12-24 hr) as compared to long stump (4-5 days) preparations, i.e., the time of onset of 16S-AChE loss depended on the length of nerve that remained attached to the muscle. Whether this result extended to other AChE molecular forms (10S, 4S) in muscle endplates could not be determined because, in contrast to 16S-AChE, these forms were also detected in red blood cells (4S) and plasma (10S). Only small amounts of 16S-AChE were found in intact obturator nerves (1/100 of that in gracilis endplate regions). Thus a faster depletion of enzyme from shorter nerve stumps after axotomy could not entirely account for the substantial effect of nerve stump length on 16S-AChE. Since muscle contraction ceases immediately following nerve transection, regardless of nerve stump length, the results can be ascribed to the lack of some neural influence other than nerve-evoked muscle activity. The present findings are consistent with the view that maintenance of 16S-AChE at neuromuscular junctions primarily depends on regulatory substances which are conveyed by axonal transport and released from nerve terminals.  相似文献   

18.
Endplate 16S acetylcholinesterase (16S-AChE) from rat anterior gracilis muscle was assessed, 6 hr to 10 days after denervation, by velocity sedimentation analysis on linear sucrose gradients. The innervating obturator nerve was transected either close (1--2 mm, short stump) or far (35--40 mm, long stump) from the muscle. In both instances, the activity of 16S-AChE gradually decreased and reached approximately the same level (10%--20% of control) by 6 days after denervation. However, enzymatic decay started considerably earlier in short stump (12--24 hr) as compared to long stump (4--5 days preparations, i.e., the time of onset of 16S-AChE loss depended on the length of nerve that remained attached to the muscle. Whether this result extended to other AChE molecular forms (10S, 4S) in muscle endplates could not be determined because, in contrast to 16S-AChE, these forms were also detected in red blood cells (4S) and plasma (10S). Only small amounts of 16S-AChE were found in intact obturator nerves (1/100 of that in gracilis endplate regions). Thus a faster depletion of enzyme from shorter nerve stumps after axotomy could not entirely account for the substantial effect of nerve stump length on 16S-AChE. Since muscle contraction ceases immediately following nerve transection, regardless of nerve stump length, the results can be ascribed to the lack of some neural influence other than nerve-evoked muscle activity. The present findings are consistent with the view that maintenance of 16SAChE at neuromuscular junctions primarily depends on regulatory substances which are conveyed by axonal transport and released from nerve terminals.  相似文献   

19.
Human myotube differentiation in vitro in different culture conditions   总被引:1,自引:0,他引:1  
Human muscle cells derived from satellite cells, maintained in standard tissue culture conditions, do not differentiate as rapidly or as completely as myoblasts from other species (chicken, rat, mouse). In an attempt to improve myogenesis, we studied the effects of modifying the culture media and of coculturing muscle with nerve cells, using myoblasts grown in standard culture media as the basis for comparison. Myogenesis was measured by fusion index, creatine kinase (CK) activity; acetylcholinesterase (AChE) activity (total and molecular forms); and the number of acetylcholine receptors (AChR). Modification of culture media accelerated fusion of myoblasts, but the cell density decreased and myotubes were unable to survive for long periods. In contrast, coculturing muscle with nerve cells increased both cell density and the number of myotubes. CK, AChE and AChR increased in the presence of defined media. In the nerve-muscle cocultures the increase was less marked. Manipulating culture conditions modified the molecular forms of AChE. Only a (4 + 6.5) S peak was present in control cultures, but a 10S peak appeared in defined media. The 16S form was detected only in nerve-muscle cocultures. This study shows that fusion of human myoblasts and differentiation of myotubes in tissue culture can be accelerated by removal of serum macromolecules. Further differentiation of myotubes was achieved only in the nerve-muscle cocultures.  相似文献   

20.
Denervated neonatal rat sternocleidomastoid muscle has decreased levels of total AChE when compared to control muscle. Denervated versus control values of total muscle AChE present a three-phase curve in function of time after denervation. There is a rapid initial fall 0-3 days after denervation, an increase during about 2 weeks, then again a decrease in total AChE. Thus, there is a transitory net accumulation of AChE after the initial fall of activity in denervated developing muscle. Extrasynaptic areas of high AChE activity develop between 1 and 2 weeks after denervation and remain visible up to 1 month after denervation before vanishing. An electron microscope study shows that these accumulations are internal to the muscle fiber, close to a limited number of muscle nuclei and associated to the sarcoplasmic reticulum and nuclear envelope, but not to the T-tubule system. As found in adult rat muscle, the initial fall in AChE affects first the 16 S AChE form, and soon after, the 4 S and 10 S AChE forms. A main difference with adult muscle is the sudden increase and predominance over other forms of 10 S AChE 2 weeks after denervation at birth. Later, the decrease in AChE affects 16 S and 4 S AChE before 10 S AChE. The regions rich in extrasynaptic sites of AChE accumulation possess a very high proportion of 10 S AChE. Thus, the mechanisms of biosynthesis, intracellular transport and/or secretion of AChE may be very different in young, developing muscle compared to adult muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号