首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide range of human disorders involves inappropriate regulation of NF-kappaB, including cancers and numerous inflammatory conditions. Toward our goal to define mechanisms through which NF-kappaB leads to the development of disease, we have developed transgenic mice that express luciferase under the control of NF-kappaB, enabling real-time in vivo imaging of NF-kappaB activity in intact animals. We show that in the absence of extrinsic stimulation, strong luminescence is evident in lymph nodes in the neck region, thymus, and Peyer's patches. Treating mice with TNF-alpha, IL-1alpha, or LPS increased the luminescence in a tissue-specific manner, with the strongest activity observed in skin, lungs, spleen, Peyer's patches, and the wall of the small intestine. Liver, kidney, heart, muscle, and adipose tissue displayed less intense activities. Also, exposure of skin to a low dose of UV radiation increased luminescence in the exposed areas. Furthermore, induction of chronic inflammation resembling rheumatoid arthritis produced strong NF-kappaB activity in the affected joints, as revealed by in vivo imaging. Thus, we have developed a versatile model for monitoring NF-kappaB activation in vivo.  相似文献   

2.
3.
alpha-MSH is an anti-inflammatory peptide which signals by binding to the melanocortin-1 receptor (MC1R) and elevating cyclic AMP in several different cells and tissues. The carboxyl terminal peptides of alpha-MSH (KPV/GKPV) are the smallest minimal sequences that prevent inflammation, but it is not known if they operate via MC1R or cyclic AMP. The aim of this study was to examine the intracellular signaling potential of the GKPV peptide sequence when immobilized to polystyrene beads via a polyethylene glycol moiety. Beads containing an immobilized GKPV peptide were investigated for their ability to inhibit proinflammatory tumor necrosis factor-alpha (TNF-alpha) stimulated activation of NF-kappaB in HBL cells stably transfected with an NF-kappaB-luciferase reporter construct. Peptide functionalized beads were compared with the ability of soluble peptide alone (alpha-MSH or GKPV) or non-functionalized beads to inhibit TNF-alpha stimulated activation of NF-kappaB. GKPV peptide functionalized beads significantly inhibited NF-kappaB-luciferase activity in comparison to beads containing no peptide moiety in one of two growths conditions investigated. Soluble alpha-MSH and GKPV peptides were also confirmed to inhibit NF-kappaB-luciferase. The present study suggests that the carboxyl terminal MSH peptide acts via a cell receptor-based mechanism and furthermore may support the potential use of such immobilized ligands for anti-inflammatory therapeutic use.  相似文献   

4.
The adenoviral E3-14.7K protein is a cytoplasmic protein synthesized after adenoviral infection. To assess the contribution of E3-14. 7K-sensitive pathways in the modulation of inflammation by the respiratory epithelium, inflammatory responses to intratracheal lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-alpha were assessed in transgenic mice bearing the adenoviral E3-14.7K gene under the direction of the surfactant protein (SP) C promoter. When E3-14.7K transgenic mice were administered LPS intratracheally, lung inflammation as indicated by macrophage and neutrophil accumulation in bronchoalveolar lavage fluid was decreased compared with wild-type control mice. Lung inflammation and epithelial cell injury were decreased in E3-14.7K mice 24 and 48 h after LPS administration. Intracellular staining for surfactant proprotein (proSP) B, proSP-C, and SP-B was decreased and extracellular staining was markedly increased in wild-type mice after LPS administration, consistent with LPS-induced lung injury. In contrast, intense intracellular staining of proSP-B, proSP-C, and SP-B persisted in type II cells of E3-14.7K mice, whereas extracellular staining of proSP-B and proSP-C was absent. Inhibitory effects of intratracheal LPS on SP-C mRNA were ameliorated by expression of the E3-14.7K gene. Similar to the response to LPS, lung inflammation after intratracheal administration of TNF-alpha was decreased in E3-14.7K transgenic mice. Levels of TNF-alpha after LPS administration were similar in wild-type and E3-14.7K-bearing mice. Cell-selective expression of E3-14.7K in the respiratory epithelium inhibited LPS- and TNF-alpha-mediated lung inflammation, demonstrating the critical role of respiratory epithelial cells in LPS- and TNF-alpha-induced lung inflammation.  相似文献   

5.
Heat shock response has been implicated in attenuating NF-kappaB activation and inflammation following sepsis. Studies utilizing sublethal heat stress or chemical enhancers to induce in vivo HSP70 expression have demonstrated survival benefit after experimental sepsis. However, it is likely these methods of manipulating HSP70 expression have effects on other stress proteins. The aim of this study was to evaluate the role of specific deletion of HSP70.1/3 gene expression on ARDS, NF-kappaB activation, inflammatory cytokine expression, and survival following sepsis. To address this question, we induced sepsis in HSP70.1/3 KO and HSP70.1/3 WT mice via cecal ligation and puncture (CLP). We evaluated lung tissue NF-kappaB activation and TNF-alpha protein expression at 1 and 2 h, IL-6 protein expression at 1, 2, and 6, and lung histopathology 24 h after sepsis initiation. Survival was assessed for 5 days post-CLP. NF-kappaB activation in lung tissue was increased in HSP70.1/3((-/-)) mice at all time points after sepsis initiation. Deletion of HSP70.1/3 prolonged NF-kappaB binding/activation in lung tissue. Peak expression of lung TNF-alpha at 1 and 2 h was also significantly increased in HSP70.1/3((-/-)) mice. Expression of IL-6 was significantly increased at 2 and 6 h, and histopathology revealed a significant increase in lung injury in HSP70.1/3((-/-)) mice. Last, deletion of the HSP70 gene led to increased mortality 5 days after sepsis initiation. These data reveal that absence of HSP70 alone can significantly increase ARDS, activation of NF-kappaB, and inflammatory cytokine response. The specific absence of HSP70 gene expression also leads to increased mortality after septic insult.  相似文献   

6.
Lipid oxidation is commonly seen in the innate immune response, in which reactive oxygen intermediates are generated to kill pathogenic microorganisms. Although oxidation products of phospholipids have generally been regarded to play a role in a number of chronic inflammatory processes, several studies have shown that oxidized phospholipids inhibit the LPS-induced acute proinflammatory response in cultured macrophages and endothelial cells. We report in this study that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC), but not nonoxidized PAPC, significantly inhibits the LPS-induced TNF-alpha response in intact mice. Oxidized PAPC also inhibits the 2'-deoxyribo(cytidine-phosphate-guanosine) (CpG) DNA-induced TNF-alpha response in cultured macrophages and intact mice. To elucidate the mechanisms of action, we show that oxidized PAPC, but not nonoxidized PAPC, inhibits the LPS- and CpG-induced activation of p38 MAPK and the NF-kappaB cascade. These results suggest a role for oxidized lipids as a negative regulator in controlling the magnitude of the innate immune response. Further studies on the mechanisms of action may lead to development of a new type of anti-inflammatory drug for treatment of acute inflammatory diseases such as sepsis.  相似文献   

7.
8.
The effects of UV-C (254 nm) and UV-B (280-320 nm) on chlorophyll fluorescence induction and ultraweak luminescence (UL) in detached leaves of Hibiscus rosa-sinensis L. were investigated. UL from leaves exposed to UV-B and UV-C radiation reached a maximum 72 h after irradiation. In both cases most of the light was of a wavelength over 600 nm. An increase in the percentage of long wavelength light with time was detected. UV radiation increased peroxidase activity, which also reached a maximum 72 h after irradiation. UV-B and UV-C both reduced variable chlorophyll fluorescence. No effect on the amount of chlorophyll or UV screening pigments was observed with the short-term irradiation used in this investigation.  相似文献   

9.
This study examined the effects of either IkappaBalpha overexpression (transgenic mice) or N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) administration (proteosome inhibitor in wild-type mice) on cardiomyocyte secretion of tumor necrosis factor-alpha (TNF-alpha) and on cardiac performance after burn trauma. Transgenic mice were divided into four experimental groups. IkappaBalpha overexpressing mice were given a third-degree scald burn over 40% of the total body surface area or wild-type littermates were given either a scald or sham burn to provide appropriate controls. Pharmacological studies included ALLN (20 mg/kg) administration in either burned wild-type mice or wild-type shams. Burn trauma in wild-type mice promoted nuclear factor-kappaB (NF-kappaB) nuclear translocation, cardiomyocyte secretion of TNF-alpha, and impaired cardiac performance. IkappaBalpha overexpression or ALLN treatment of burn trauma prevented NF-kappaB activation in cardiac tissue, prevented cardiomyocyte secretion of TNF-alpha, and ablated burn-mediated cardiac contractile dysfunction. These data suggest that NF-kappaB activation and inflammatory cytokine secretion play a significant role in postburn myocardial abnormalities.  相似文献   

10.
11.
The role of NF-kappaB in cardiac physiology and pathophysiology has been difficult to delineate due to the inability to specifically block NF-kappaB signaling in the heart. Cardiac-specific transgenic models have recently been developed that repress NF-kappaB activation by preventing phosphorylation at specific serine residues of the inhibitory kappaB (IkappaB) protein isoform IkappaBalpha. However, these models are unable to completely block NF-kappaB because of a second signaling pathway that regulates NF-kappaB function via Tyr42 phosphorylation of IkappaBalpha. We report the development of transgenic (3M) mouse lines that express the mutant IkappaBalpha(S32A,S36A,Y42F) in a cardiac-specific manner. NF-kappaB activation in cardiomyopathic TNF-1.6 mice is completely blocked by the 3M transgene but only partially blocked (70-80%) by the previously described double-mutant 2M [IkappaBalpha(S32A,S36A)] transgene, which demonstrates the action of two proximal pathways for NF-kappaB activation in TNF-alpha-induced cardiomyopathy. In contrast, after acute stimuli including administration of TNF-alpha and ischemia-reperfusion (I/R), NF-kappaB activation is blocked in both 2M and 3M transgenic mice. This result suggests that phosphorylation of the regulatory Ser32 and Ser36 predominantly mediates NF-kappaB activation in these situations. We show that infarct size after I/R is reduced by 70% in 3M transgenic mice, which conclusively demonstrates that NF-kappaB is involved in I/R injury. In summary, we have engineered novel transgenic mice that allow us to distinguish two major proximal pathways for NF-kappaB activation. Our results demonstrate that the serine and tyrosine phosphorylation pathways are differentially activated during different pathophysiological processes (cardiomyopathy and I/R injury) and that NF-kappaB contributes to infarct development after I/R.  相似文献   

12.
13.
We demonstrated that TNF-alpha suppressed differentiation and potentiated cell death induced by butyrate (NaBt) in both adenocarcinoma HT-29 and fetal FHC human colon cells in vitro. Since TNF-alpha is a typical activator of NF-kappaB pathway, we studied the role of NF-kappaB activation in cell differentiation and death during the TNF-alpha and NaBt co-treatment. TNF-alpha induced rapid NF-kappaB activation in both HT-29 and FHC cell lines and this effect was differently modulated by NaBt in these two cell lines. In HT-29 cells, NaBt potentiated NF-kappaB activity induced by TNF-alpha after 4h treatment. However, this initial potentiation of NF-kappaB activity was not observed in FHC cells. During additional time of TNF-alpha and NaBt co-treatment, NaBt decreased the TNF-alpha-mediated NF-kappaB activity in both cell types. We also detected a different response of HT-29 and FHC cells after the pre-treatment with the NF-kappaB inhibitor parthenolide. Our results indicated that NaBt-mediated differentiation and apoptosis of colon epithelial cells can be modulated by TNF-alpha. Furthermore, we found significant differences in the mechanism of the NaBt and TNF-alpha co-treatment effects between cells of non-cancer and cancer origin, suggesting that the NF-kappaB pathway may be more effectively involved in these processes in cancer cells.  相似文献   

14.
UV irradiation has been shown to activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in cell culture; however, only limited studies have been described in vivo. UV light has been categorized as UV-A (400 to 315 nm), -B (315 to 280 nm), or -C (less than 280 nm); the longer wavelengths are less harmful but more penetrative. Highly penetrative UV-A radiation constitutes the vast majority of UV sunlight reaching the earth's surface but is normally harmless. UV-B irradiation is more harmful but less prevalent than UV-A. In this report, the HIV-1 LTR-luciferase gene in the skin of transgenic mice was markedly activated when exposed to UV-B irradiation. The LTR in the skin of transgenic mice pretreated topically with a photosensitizing agent (psoralen) was also activated to similar levels when exposed to UV-A light. A 2-h exposure to sunlight activated the LTR in skin treated with psoralen, whereas the LTR in skin not treated with psoralen was activated after 7 h of sunlight exposure. The HIV-1 LTR-beta-galactosidase reporter gene was preferentially activated by UV-B irradiation in a small population of epidermal cells. The transgenic mouse models carrying HIV-1 LTR-luciferase and LTR-beta-galactosidase reporter genes have been used to demonstrate the in vivo UV-induced activation of the LTR and might be used to evaluate other environmental factors or pharmacologic substances that might potentially activate the HIV-1 LTR in vivo.  相似文献   

15.
Tumor necrosis factor (TNF)-alpha is a macrophage-derived proinflammatory cytokine implicated in hepatotoxicity. In the present studies, p55 TNF receptor 1 (TNFR1) -/- mice were used to assess the role of TNF-alpha in acetaminophen-induced antioxidant defense. Treatment of wild-type (WT) mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increased serum alanine transaminases. This was correlated with a rapid depletion of hepatic glutathione (GSH). Whereas in WT mice GSH levels returned to control after 6-12 h, in TNFR1-/- mice recovery was delayed for 48 h. Delayed induction of heme oxygenase-1 and reduced expression of CuZn superoxide dismutase were also observed in TNFR1-/- compared with WT mice. This was associated with exaggerated hepatotoxicity. In WT mice, acetaminophen caused a time-dependent increase in activator protein-1 nuclear binding activity and in c-Jun expression. This response was significantly attenuated in TNFR1-/- mice. Constitutive NF-kappaB binding activity was detectable in livers of both WT and TNFR1-/- mice. A transient decrease in this activity was observed 3 h after acetaminophen in WT mice, followed by an increase that was maximal after 6-12 h. In contrast, in TNFR1-/- mice, acetaminophen-induced decreases in NF-kappaB activity were prolonged and did not return to control levels for 24 h. These data indicate that TNF-alpha signaling through TNFR1 plays an important role in regulating the expression of antioxidants in this model. Reduced generation of antioxidants may contribute to the increased sensitivity of TNFR1-/- mice to acetaminophen.  相似文献   

16.
Developmental errors are often induced in the embryos of many organisms by environmental stress. Ultraviolet-B radiation (UV-B) is one of the most serious environmental stressors in embryonic development. Here, we investigated susceptibility to UV-B (0.5 kJ m?2) in embryos of the two-spotted spider mite, Tetranychus urticae, to examine the potential use of UV-B in control of this important agricultural pest worldwide. Peak susceptibility to UV-B (0% hatchability) was found in T. urticae eggs 36–48 h after oviposition at 25 °C, which coincides with the stages of morphogenesis forming the germ band and initial limb primordia. However, hatchability recovered to?~?80% when eggs irradiated with UV-B were subsequently exposed to visible radiation (VIS) at 10.2 kJ m?2, driving photoreactivation (the photoenzymatic repair of DNA damage). The recovery effect decreased to 40–70% hatchability, depending on the embryonic developmental stage, when VIS irradiation was delayed for 4 h after the end of exposure to UV-B. Thus UV-B damage to T. urticae embryos is critical, particularly in the early stages of morphogenesis, and photoreactivation functions to mitigate UV-B damage, even in the susceptible stages, but immediate VIS irradiation is needed after exposure to UV-B. These findings suggest that nighttime irradiation with UV-B can effectively kill T. urticae eggs without subsequent photoreactivation and may be useful in the physical control of this species.  相似文献   

17.
18.
Tpl2 knockout mice produce low levels of TNF-alpha when exposed to lipopolysaccharide (LPS) and they are resistant to LPS/D-Galactosamine-induced pathology. LPS stimulation of peritoneal macrophages from these mice did not activate MEK1, ERK1, and ERK2 but did activate JNK, p38 MAPK, and NF-kappaB. The block in ERK1 and ERK2 activation was causally linked to the defect in TNF-alpha induction by experiments showing that normal murine macrophages treated with the MEK inhibitor PD98059 exhibit a similar defect. Deletion of the AU-rich motif in the TNF-alpha mRNA minimized the effect of Tpl2 inactivation on the induction of TNF-alpha. Subcellular fractionation of LPS-stimulated macrophages revealed that LPS signals transduced by Tpl2 specifically promote the transport of TNF-alpha mRNA from the nucleus to the cytoplasm.  相似文献   

19.
AIM: Suramin is a symmetrical polysulfonated naphthylamine derivative of urea. There have been few studies on the effect of suramin on cytokines. We examined the effects of suramin on production of inflammatory cytokines. METHODS: We made an acute liver injury model treated with d-galactosamine (GalN) and lipopolysaccharide (LPS). Plasma AST, ALT, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-6 levels were measured. We compared with survival rate, histological found and NF-kappaB activity between with and without treatment of suramin. In macrophage like cell line, TNF-alpha and IL-6 production, TNF-alpha and IL-6 mRNA expression, and NF-kappaB activity was measured. RESULTS: The lethality of mice administered suramin with GalN/LPS was significantly decreased compared with that in mice without suramin. Changes of hepatic necrosis and apoptosis were slight in suramin-treated mice. Serum AST, ALT, TNF-alpha, IL-6 levels and NF-kappaB activity in the liver were significantly lower in mice administered suramin. In an in vitro model, suramin preincubation inhibited TNF-alpha and IL-6 production, TNF-alpha and IL-6 mRNA expression, and NF-kappaB activity. CONCLUSIONS: Suramin inhibits TNF-alpha and IL-6 production through the suppression of NF-kappaB activity from macrophages and shows therapeutic effects on acute liver damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号