首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydrohexacyanoferrates (II and III) of aromatic N-heterocyclic cations X+ (such as N-methylquinoxalinium, pyridinium, dipyridinium) and X2+ (such as pyridylpyridinium, dipyridinium) are synthesized and characterized. For the first time, the crystal structures of acidic dihydrohexacyanoferrates are described. The formation of the and X2+H2[Fe(CN)6] species which contain the [Fe(CN)6]4− and [Fe(CN)4(CNH)2]2− anions from acidic solutions occurs after the formation of the H[Fe(CN)6]3− species as can be established from the outer-sphere charge transfer (OSCT) bands in the absorption spectra. The crystal structures of these species contain extensive network of intermolecular N-H?N, N-H?O and O-H?N hydrogen bonds which link the hexacyanoferrate anions with solvent water (if present) and N-heterocyclic cations if the later can participate in the H-bond formation. In the crystals of dihydrohexacyanoferrates, the H-bond networks can be two-dimensional (species 1) and three-dimensional (species 2-7). The lack of acidic protons for the H-bond network formation can be compensated by solvent water molecules. The H-bond network plays an important role in stabilization of such strongly-acidic species such as the H2Bpy2+ and HPypy2+ cations and the [FeII(CN)4(CNH)2]2− anion.  相似文献   

2.
Dicyclohexylcarbodiimide (DCCD), a potent inhibitor of the F0F1-type H+-translocating ATPase, was employed to determine the possible involvement of such an ATPase in urinary acidification. Two methods were used in this approach: (1) the reaction of [14C]DCCD with tissues involved in urinary acidification and (2) the inhibition of ATPase activity by DCCD. Membrane components from epithelial cells of toad and turtle urinary bladder and brush borders of rabbit kidney were reacted with [14C]DCCD and analyzed by polyacrylamide gel electrophoresis both before and after extraction with organic solvents. Although a DCCD-binding component was extracted from toad and turtle bladder membranes by chloroform/methanol (2:1, vv), the binding was not saturable. Analysis of this DCCD-binding component by thin-layer chromatography indicated that there was no ninhydrin reactivity associated with the [14C]DCCD binding. Moreover, all attempts to precipitate a DCCD-binding protein were unsuccessful. This and other evidence suggested that the observed DCCD binding was to phospholipid. In the second type of experiments, the ATPase activity present in brush borders from rabbit kidney was partially inhibited by DCCD, but at a concentration that is over two orders of magnitude greater than that required for typical DCCD-sensitive ATPase. We conclude from our failure to find positive evidence of a DCCD-reactive protein and from the relative insensitivity of the ATPase to DCCD that either urinary acidification is not accomplished by a typical F0F1-type translocating ATPase, or the F0 has been modified so that the sensitivity to DCCD has been altered or lost.  相似文献   

3.
Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium‐based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol‐β‐guaiacyl ether (VG) with 1‐allyl‐3‐methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π‐π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl anion forms a hydrogen‐bonded complex with VG, the imidazolium cation interacts with VG via both the π‐π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium‐based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution.  相似文献   

4.
5.
Combinations of gibberellic acid (GA3) and 2,4-dichlorophenoxyacetic acid (2,4-D) were evaluated to determine if GA3 increased the effectiveness of 2,4-D on water hyacinths (Eichhornia crassipes (Mart.) Solms) under field conditions. Bulbous-leaved water hyacinths were grown outdoors in north Florida in 70-1 containers during the 1980–1982 growing seasons with combinations of GA3 at 0, 23.5, 47.0, 94.0 and 188 g ha?1 and 2,4-D at 0, 0.28, 0.56 1.12 and 2.24 kg ha?1. Significant increases in the effectiveness of 2,4-D in combination with GA3 were observed at lower rates of 2,4-D. However, these increases appeared to be additive since regression analysis revealed no significant interaction or synergism between GA3 and 2,4-D at any level.  相似文献   

6.
The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2–3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo, migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues.  相似文献   

7.
Suppression of Tumorigenicity 2 (ST2), a member of the interleukin-1 receptor (IL-1R) family, activates type 2 immune responses to pathogens and tissue damage via binding to IL-33. Dysregulated responses contribute to asthma, graft-versus-host and autoinflammatory diseases and disorders. To study ST2 structure for inhibitor development, we performed the principal component (PC) analysis on the crystal structures of IL1-1R1, IL1-1R2, ST2 and the refined ST2 ectodomain (ST2ECD) models, constructed from previously reported small-angle X-ray scattering data. The analysis facilitates mapping of the ST2ECD conformations to PC subspace for characterizing structural changes. Extensive coverage of ST2ECD conformations was then obtained using the accelerated molecular dynamics simulations started with the IL-33 bound ST2ECD structure as instructed by their projected locations on the PC subspace. Cluster analysis of all conformations further determined representative conformations of ST2ECD ensemble in solution. Alignment of the representative conformations with the ST2/IL-33 structure showed that the D3 domain of ST2ECD (containing D1-D3 domains) in most conformations exhibits no clashes with IL-33 in the crystal structure. Our experimental binding data informed that the D1-D2 domain of ST2ECD contributes predominantly to the interaction between ST2ECD and IL-33 underscoring the importance of the D1-D2 domain in binding. Computational binding site assessment revealed one third of the total detected binding sites in the representative conformations may be suitable for binding to potent small molecules. Locations of these sites include the D1-D2 domain ST2ECD and modulation sites conformed to ST2ECD conformations. Our study provides structural models and analyses of ST2ECD that could be useful for inhibitor discovery.  相似文献   

8.
Hua Mei  Qi Chen  Qi Sun 《Inorganica chimica acta》2010,363(10):2265-5141
The synthesis and structure of a new 1-D molybdenum-arsenic compound based on the bi-capped Keggin anion [MoVI6MoV6O36(AsO4)(MoVO)2] have been reported, and its catalytic property has been examined. The title compound was characterized by IR, TG and X-ray diffraction analysis. Single crystal X-ray diffraction shows that it crystallizes in cubic crystal system, space group Pn-3m with cell dimension: a = 11.749(2) Å, V = 1622.0(5) Å3, Z = 2. Its structure has a 1-D infinite chain, in which the bi-capped Keggin anions are connected by sharing one terminal oxygen atom from the caps. The compound shows a moderate styrene conversion (48%), the major product for the oxidation of styrene is benzaldehyde (85.2%).  相似文献   

9.
Natural-abundance, 13C-n.m.r. spectroscopy was used to study the binding of Gd3+ and Mn2+ to N-acetyl-2-O-methyl-α-neuraminic acid (2) and to methyl N-acetyl-2-O-methyl-α-neuraminate (3). The results showed that Gd3+ and Mn2+ bind in the region of the glycerol-1-yl side-chain and the 5-acetamido group of compound 3. When the α-NeuAc derivative contains a carboxylate anion, as in compound 2, multiple, metal-ion-binding sites occur, involving the head (the carboxyl end) and the tail (the glycerol-1-yl and 5-acetamido groups) of the molecule.  相似文献   

10.
N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca2+-dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A2 (cPLA2ε) was recently identified as a Ca2+-dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA2ε function as Ca-NAT. We next purified both mouse recombinant cPLA2ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1?mM CaCl2 and lowered the EC50 value of Ca2+ >8-fold. Using a PS probe, we showed that cPLA2ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA2ε with PS in living cells. Finally, we found that the Ca2+-ionophore ionomycin increased [14C]NAPE levels >10-fold in [14C]ethanolamine-labeled cPLA2ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca2+-independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca2+-dependent activity and human cPLA2ε isoforms also functioned as Ca-NAT.  相似文献   

11.
12.
13.
Lung N-oxidase enzyme activity was about three times higher than liver N-oxidase at the pH optimum, about pH 8.9, whereas the activities were nearly the same at more physiological ranges of pH. The lung N-oxidase was also stimulated about 2-fold by 100 mM Mg2+ and by 0.1 mM Hg2+, whereas liver N-oxidase activity was inhibited by these concentrations of ions. The difference in response of liver and lung enzymes to Mg2+ and Hg2+ was not altered by preparing the microsomes in the presence of 50 mM ethylenediamine tetraacetic acid (EDTA) in 0.1 M Tris (hydroxymethyl) amino methane (Tris) buffer or 50 mM EDTA in 0.1 M KPO4 buffer, both at pH 7.6, indicating that the differences are probably not due to the presence of endogenous metals. The difference between the liver and lung N-oxidase systems may be due to the tissue environment rather than to the enzyme itself since mercury stimulation of lung N-oxidation began to disappear upon partial purification of the N-oxidase enzymes. In contrast to the effects of Hg2+ and Mg2+, 1 mM Ni2+ enhanced liver N-oxidase activity about 30% and 5 mM Ni2+ stimulated lung enzyme activity about 30% whereas concentrations above 10 mM were inhibitory to both N-oxidases. Both liver and lung demethylase activities were inhibited by these concentrations of Mg2+, Hg2+ and Ni2+.Various suifhydryl reagents were also tested for their effects on these enzymes. The mercurials, para-chloromercurybenzoate (pCMB) and phenylmercuryacetate (PMA) at concentrations of 0.1 mM had the same effect as HgCl2 inhibiting both demethylases and liver N-oxidase, but stimulating lung N-oxidase activity. However, 0.1 mM to 1 mMN-ethylmaleimide (NEM) and iodoacetamide had little if any effect on either liver or lung N-oxidase. It was also shown that Hg2+ effects on N-oxidase activity could be overcome by dilution.Changes in N,N-dimethyl aniline (DMA) metabolism with age were followed in rabbits from 4 days old to adult. There was a steady increase in lung demethylase activity and N-oxidase activity in the liver and lung to adult levels. However, the liver demethylase had a sharp increase in activity between 2 weeks and 1 month much like that seen with benzphetamine demethylase in rabbit liver.Activities of N-demethylase in liver and lung, and N-oxidr.se in liver from new-born rabbits were from 10 to 20 % of adult levels. However, in lung, N-oxidase activities in the newborn were about 50 % of adult levels. Microsomal N-oxidation in lungs from 2-day-old rabbits was stimulated by 0.1 mM mercury just as in the adult.  相似文献   

14.
The title compounds 1,3-propanediammonium tetrathiomolybdate, (1,3-pnH2)[MoS4], 1 and, N,N,N′,N′-tetramethylethylenediammonium tetrathiomolybdate, (tmenH2)[MoS4], 2, were prepared by reacting the ammonium salt of [MoS4]2− with the corresponding organic diamine. In 1 and 2 the organic diamines 1,3-propanediamine (1,3-pn) and N,N,N′,N′-tetramethylethylenediamine (tmen) are present in their diprotonated form. The reaction of 1 or 2 with [Ni(en)3]Cl2 · 2H2O (en is ethylenediamine) results in the formation of the highly insoluble complex tris(ethylenediamine)Ni(II) tetrathiomolybdate, [Ni(en)3][MoS4], in quantitative yields. 1 and 2 have been characterized by chemical analysis, vibrational, UV-Vis and NMR spectroscopy, TG-DTA-MS and single crystal X-ray crystallography. Compound 1 is thermally more stable compared to 2. Both complexes decompose in a single step forming amorphous molybdenum sulfide. The structure of the title complexes can be described as consisting of tetrahedral [MoS4]2− dianions which accept a complex series of H-bonds from the organic dications. The strength and number of these hydrogen bonds affect the Mo-S bond lengths.  相似文献   

15.
16.
The accumulation of the scrapie prion protein PrPSc, a misfolded conformer of the cellular prion protein PrPC, is a crucial feature of prion diseases. In the central nervous system, this process is accompanied by conspicuous microglia activation. The NLRP3 inflammasome is a multi-molecular complex which can sense heterogeneous pathogen-associated molecular patterns and culminates in the activation of caspase 1 and release of IL 1β. The NLRP3 inflammasome was reported to be essential for IL 1β release after in vitro exposure to the amyloidogenic peptide PrP106-126 and to recombinant PrP fibrils. We therefore studied the role of the NLRP3 inflammasome in a mouse model of prion infection. Upon intracerebral inoculation with scrapie prions (strain RML), mice lacking NLRP3 (Nlrp3-/-) or the inflammasome adaptor protein ASC (Pycard-/-) succumbed to scrapie with attack rates and incubation times similar to wild-type mice, and developed the classic histologic and biochemical features of prion diseases. Genetic ablation of NLRP3 or ASC did not significantly impact on brain levels of IL 1β at the terminal stage of disease. Our results exclude a significant role for NLRP3 and ASC in prion pathogenesis and invalidate their claimed potential as therapeutic target against prion diseases.  相似文献   

17.
Five new complexes, [Co3(HL1)2(Py)8]·4CH3OH (1), [Ni3(HL1)2(Py)4]2·2DMF (2), [Co3(H2L2)2(Py)8]·2NO3 (3), [Ni2(HL2)(Py)6] (4) and [Cu4(HL2)2(Py)4]·4DMF (5) (H4L1 = N-propionyl-4-hydroxysalicylhydrazide, H44-hopshz; H5L2 = N-(3-carboxy-cis-2-propenoyl)-4-hydroxysalicylhydrazide, H54-hocpshz) have been obtained from two N,N′-diacylhydrazide ligands and characterized by elemental analysis, FT-IR, X-ray diffraction and antimicrobial activities. These di-, tri-, and tetrameric complexes are connected into three-dimensional supramolecular architectures with interesting topologies through O-H?O, C-H?O and C-H?π interactions. 1-3 are linear trimeric complexes with the ligands triply-deprotonated. Topological analysis indicates that they exhibit 2D (4,4), 3D (6,8)-connected (3349526)(3441257647) and 8-connected (42563) net, respectively. 4 and 5 possess dimeric and tetrameric structures, which are extended into 7-connected (33413536) and 4-connected (4,4) net, respectively.  相似文献   

18.
Recently, emerging evidence strongly suggested that the activation of interleukin‐27 Receptor α (IL‐27Rα) could modulate different inflammatory diseases. However, whether IL‐27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL‐27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL‐27Rα/IL‐27 expression was detected, and IL‐27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL‐27 (rIL‐27) stimulation. Finally, IFN‐γ/ IL‐10 in graft/serum from model mice was detected. Results showed higher IL‐27Rα/IL‐27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL‐27Rα+ spleen cells accelerated allograft rejection in vivo. rIL‐27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL‐27 could be almost totally blocked by JAK/ STAT inhibitor and anti‐IL‐27 p28 Ab. Finally, higher IL‐27Rα+IFN‐γ+ cells and lower IL‐27Rα+IL‐10+ cells within allografts, and high IFN‐γ/low IL‐10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL‐27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up‐regulating IFN‐γ via enhancing STAT pathway. Blocking IL‐27 pathway may favour to prevent allorejection, and IL‐27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.  相似文献   

19.
锰超氧化物歧化酶(MnSOD)催化两分子超氧自由基歧化为分子氧和过氧化氢。超氧自由基被Mn3+SOD氧化成分子氧的反应以扩散的方式进行。超氧自由基被Mn2+SOD还原为过氧化氢的反应以快循环和慢循环两条途径平行进行。在慢循环途径中,Mn2+SOD与超氧自由基形成产物抑制复合物,然后该复合物被质子化而缓慢释放出过氧化氢。在快循环途径中,超氧自由基直接被Mn2+SOD转化为产物过氧化氢,快速循环有利于酶的复活与周转。本文提出温度是调节锰超氧化物歧化酶进入慢速或者快速循环催化途径的关键因素。随着在生理温度范围内的温度升高,慢速循环成为整个催化反应的主流,因而生理范围内的温度升高反而抑制该酶的活性。锰超氧化物歧化酶的双相酶促动力学特性可以用该酶保守活性中心的温度依赖性配位模型进行合理化解释。当温度降低时,1个水分子(或者OH-)接近Mn、甚至与Mn形成配位键,从而干扰超氧自由基与Mn形成配位键而避免形成产物抑制。因此在低温下该酶促反应主要在快循环通路中进行。最后阐述了几种化学修饰模式对...  相似文献   

20.
A novel method of organogenesis in neem (Azadirachta indica A. Juss.) from unfertilized ovaries is described. The Murashige and Skoog’s (MS) medium with 9 % sucrose, 1 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 μM 6-benzylaminopurine (BAP) was the best for callus induction from unfertilized ovaries. However, further proliferation of callus occurred better on MS medium supplemented with 0.5 μM 2,4-D either alone or in combination with 4.5 μM kinetin. Maximum shoot regeneration (78 %) was observed when calli, induced from ovaries of 4 mm size flower buds and proliferating on MS + 0.5 μM 2,4-D, were subcultured to MS medium containing 5 μM BAP. Histological analysis revealed that 4 mm sized flower bud corresponds to a 2-nucleate stage of embryo sac. The shoots were then multiplied by forced axillary branching on MS medium supplemented with 1.0 μM BAP and 250 mg dm−3 casein hydrolysate. The shoots could be rooted on 1/4 strength MS medium supplemented with 0.5 μM indole-3-butyric acid (IBA) at a frequency of 79 %. Cytological analysis by root tip squash preparations revealed that all the plantlets were diploids. These plants were subsequently hardened and established in soil with transplantation rate of 81.8 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号