首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

2.
Electrospray (ESI) mass spectra analysis of acetonitrile solutions of a series of neutral chloro dimers, pincer type, and monomeric palladacycles has enabled the detection of several of their derived ionic species. The monometallic cationic complexes Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1a) and [Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (1b) and the bimetallic cationic complex [κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]Pd-Cl-Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1c) were detected from an acetonitrile solution of the pincer palladacycles Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](Cl) 1. For the dimeric compounds {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (2, Y=H and 3, CF3), highly electronically unsaturated palladacycles [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2d, 3d) and their mono and di-acetonitrile adducts, namely, [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (2e, 3e) and [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)2]+ (2f and 3f) were detected together with the bimetallic complex [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]-Cl-Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N](CH3)2]+ (2a, 3a) and its acetonitrile adducts [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[ κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2b, 3b) and [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[κ1-C, κ1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2(CH3CN)]+ (2c, 3c). The dimeric palladacycle {Pd[κ1-C1-N-C(CH3O-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (4) is unique as it behaves as a pincer type compound with the OCH3 substituent acting as an intramolecular coordinating group which prevents acetonitrile full coordination, thus forming the cationic complexes [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)Pd]+ (4b), [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2- κOCN)Pd(CH3CN)]+ (4c) and [(C6H4 (o-MeO)CC(Cl)CH2N(CH3)2O, κCN)Pd-Cl-Pd(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)]+ (4a). ESI-MS spectra analysis of acetonitrile solutions of the monomeric palladacycles Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Cl)(Py) (5, Y=H and 6, Y=CF3) allows the detection of some of the same species observed in the spectra of the dimeric palladacycles, i.e., monometallic cationic 2d-3d, 2e-3e and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Py)}+ (5a, 6a) and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)(Py)}+ (5b, 6b) and the bimetallic 2a, 3a, 2b, 3b, 2c and 3c. In all cationic complexes detected by ESI-MS, the cyclometallated moiety was intact indicating the high stability of the four or six electron anionic chelate ligands. The anionic (chloride) or neutral (pyridine) ligands are, however, easily replaced by the acetonitrile solvent.  相似文献   

3.
Complexes cis,trans-Fe(CO)2(PMe3)2RR′ (R = CH3, R′ = Ph (2); R = CH3, R′ = CHCH2 (3); R = CHCH2, R′ = Ph (4); R = R′ = CHCH2 (5); R = R′ = CH3 (6)) were prepared by reaction of cis,trans-Fe(CO)2(PMe3)2RCl (1) with organolithium reagents LiR′. All complexes were characterized in solution by IR and 1H, 31P and, in a few cases, 13C NMR mono- and bi-dimensional spectroscopies. Complexes 5 and 6 were structurally characterized by X-ray diffractometric methods. In solution complexes 2, 3 and 4 undergo slowly coupling of the σ-hydrocarbyl substituents leading to Fe(CO)3(PMe3)2 and other decomposition products. Complex 6 was very stable in solution in the absence of nucleophiles and in the solid state. Complex 5 transformed through intramolecular coupling of the vinyl groups into Fe(CO)(PMe3)24-butadiene) (7), which was characterized in solution by IR and NMR spectroscopies.  相似文献   

4.
The iron hydrido complex HFe(CO)2{P(OPh)3}{(PhO)2POC6H4} (1), was rapidly deprotonated by DBU or [BzMe3N][OH] in THF to afford the new carbonyl iron anion [Fe(CO)2{P(OPh)3}{(PhO)2POC6H4}] ([2]), containing an ortho-metallated triphenyl phosphite ligand. Complex [2] reacted with triorganostannyl and plumbyl salts and with halogens to give the octahedral FeII compounds Fe(CO)2{P(OPh)3}{(PhO)2POC6H4}(X) (X=SnPh3, 3; SnMe3, 4; PbPh3, 5; PbMe3, 6; Cl, 7; Br, 8; I, 9). The Group 14 complexes 3-6 were obtained in one isomeric form in which the PIII-donor atoms are mutually cis, the carbonyl ligands are cis and the P(OPh)3 and MR3 (M=Sn, Pb; R=Ph, Me) groups are trans as determined by solution-state IR, 31P and 13C NMR spectroscopic data. This geometry was confirmed for 3 by a single crystal X-ray diffraction study. The halide complexes, however, were obtained as a mixture of isomers. The major isomer (7, X=Cl; 8a, X=Br; 9a, X=I) has cis P atoms, trans CO groups and the halide located trans to the phosphorus atom of the ortho-metallated phosphite ligand. The structure of 9a was confirmed by an X-ray diffraction study. Two other isomers, designated 8b (X=Br) and 9b (X=I), with cis P atoms and cis CO groups were isolated from the reactions of [2] with Br2 and I2, respectively. The structure of the latter was established by X-ray crystallography and is related to 9a by exchange of the P(OPh)3 ligand and a carbonyl group such that the metal-bound C atom of the five-membered metallacycle is trans to CO. The stereo-geometry of 8b could not be unambiguously assigned from the spectroscopic data; however, two of the seven possible geometric isomers were suggested as plausible structures.  相似文献   

5.
The synthesis of palladacyclopentadiene derivatives with the mixed-donor bidentate ligands o-Ph2PC6H4CHNR (NP) has been achieved. The new complexes of general formula [Pd{C4(COOMe)4}(o-Ph2PC6H4CHNR)] [R=Me (1), Et (2), iPr (3), tBu (4), NHMe (5)] have been prepared by reaction between the precursor [Pd{C4(COOMe)4}]n and the corresponding iminophosphine. The polymer complex [Pd{C4(COOMe)4}]n also reacts with pyridazine (C4H4N2) to give the insoluble dinuclear complex [Pd{C4(COOMe)4}(μ-C4H4N2)]2 (6), which has been successfully employed as precursor in the synthesis of pyridazine-based palladacyclopentadiene complexes. The reaction of 6 with tertiary phosphines yielded complexes containing an N,P-donor setting of formula [Pd{C4(COOMe)4}(C4H4N2)(L)] (L=PPh3 (7), PPh2Me (8), P(p-MeOC6H4)3 (9), P(p-FC6H4)3 (10)). The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, 1H, 19F and 31P NMR). The molecular structure of complex 3 has been determined by a single-crystal diffraction study, showing that the iminophosphine acts as chelating ligand with coordination around the palladium atom slightly distorted from the square-planar geometry.  相似文献   

6.
Reaction of PPN[W(CO)3(R2PC2H4PR2)(SH)] (PPN=Ph3PNPPh3; R=Me, 1; R=Ph, 2) with aromatic aldehydes in the presence of trifluoroacetic acid gave tungsten complexes of thiobenzaldehydes mer-[W(CO)3(R2PC2H4PR2)(η2-SCHR)] (R=Me, 3a-3f; R=Ph, 4a-4e) in high yields. Analogous complexes of aliphatic thioaldehydes mer-[W(CO)3(Me2PC2H4PMe2)(η2-SCHR)] (3g-3l) could only be obtained from the highly electron-rich thiolate complex 1. The structure of 3i (R=i-Bu) was determined by X-ray crystallography. In solution the complexes 3 and 4 are in equilibrium with small quantities of their isomers fac-[W(CO)3(R2PC2H4PR2)(η2-SCHR)]. Reaction of complexes 3 with dimethylsulfate followed by salt metathesis with NH4PF6 gave the alkylation products mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCHR)]PF6 (5a-5l) as mixtures of E and Z isomers. The methylated thioformaldehyde complex mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCH2)]PF6 (5m) was prepared similarly. Nucleophilic addition of hydride (from LiAlH4) to 5 initially gave thioether complexes mer-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (mer-6) which rapidly isomerized to fac-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (fac-6).  相似文献   

7.
A synthetic and mechanistic study is reported on ligand substitution and other reactions of six-coordinate ruthenium(II) carbonyl complexes containing tridentate PhP(CH2CH2CH2PCy2)2 (Cyttp). Carbonylation of cis-mer-Ru(OSO2CF3)2(CO)(Cyttp) (1) affords [cis-mer-Ru(OSO2CF3)(CO)2(Cyttp)]O3SCF3 (2(O3SCF3)) and, on longer reaction times, [cis-mer-Ru(solvent)(CO)2(Cyttp)](O3SCF3)2 (solvent = acetone, THF, methanol). 2(O3SCF3) reacts with each of NaF, LiCl, LiBr, NaI, and LiHBEt3 to yield [cis-mer-RuX(CO)2(Cyttp)]+ (X = F (3), Cl (4), Br (5), I (6), H (7)), isolated as 3-7(BPh4). These conversions proceed with high stereospecificity to afford only a single isomer of the product that is assigned a structure in which the Ph group of Cyttp points toward the CO trans to X (anti when X = F, Cl, Br, or I; syn when X = H). Treatment of 2(O3SCF3) with NaOMe and CO generates the methoxycarbonyl complex [cis-mer-Ru(CO2Me)(CO)2(Cyttp)]+ (8), whereas addition of excess n-BuLi to 2(O3SCF3) in THF under CO affords mer-Ru(CO)2(Cyttp) (9). The two 13C isotopomers [cis-mer-Ru(OSO2CF3)(CO)(13CO)(Cyttp)]O3SCF3 (2′(O3SCF3): 13CO trans to PC; 2″(O3SCF3): 13CO cis to all P donors) were synthesized by appropriate adaptations of known transformations and used in mechanistic studies of reactions with each of LiHBEt3, NaOMe/CO, and n-BuLi. Whereas LiHBEt3 reacts with 2′(O3SCF3) and 2″(O3SCF3) to replace triflate by hydride without any scrambling of the carbonyl ligands, the corresponding reactions of NaOMe-CO are more complex. The methoxide combines with the CO cis to triflate in 2, and the resultant methoxycarbonyl ligand ends up positioned trans to the incoming CO in 8. A mechanism is proposed for this transformation. Finally, treatment of either 2′(O3SCF3) or 2″(O3SCF3) with an excess of n-BuLi leads to the formation of the same two ruthenium(0) isomers of mer-Ru(CO)(13CO)(Cyttp). These products represent, to our knowledge, the first example of a syn-anti pair of isomers of a five-coordinate metal complex.  相似文献   

8.
Reaction of Fe2(CO)9 at room temperature in THF with the di-thiooxamides (L), SC{N(R,R′)}C{(R,R′)N}S [R=Me, R′-R′=(CH2)2 (a); R=H, R′=iPr (b); R=H, R′=iPr (c), R=H, R′=benzyl (d); R=H, R′=H (e)], results for ligands a-d initially in the formation of the mononuclear σ-S, σ-S′ chelate complexes Fe(CO)3(L) (7a-d), which could be isolated in case of 7a and 7d. Under the reaction conditions, complexes 7a-d react further with [Fe(CO)4] fragments to give three types of Fe2(CO)6(L) complexes (8a-d) in high yields, depending on the di-thiooxamide ligand used together with traces of the known complex S2Fe3(CO)9 (14). The molecular structures of these complexes have been established by the single crystal X-ray diffraction determinations of 8a, 8b and 8d. In the reaction with ligand e the corresponding complex 7e was not detected and the well-known complexes 14 and S2Fe3(CO)9 (15) were isolated in low yield. In situ prepared 7a reacts in a slow reaction with 1 equiv. of dimethyl acetylene dicarboxylate in a 1,3-dipolar cycloaddition reaction to give the stable initial ferra [2.2.1] bicyclic complex 10a in 60% yield. In complex 10a an additional Fe(CO)4 fragment is coordinated to the sulfido sulfur atom of the cycloadded FeSC fragment. When a toluene solution of 10a is heated to 50 °C it loses two terminal CO ligands to give the binuclear FeFe bonded complex 11a in almost quantitative yield. The molecular structures of 10a and 11a have been confirmed by single crystal X-ray diffraction. Reaction of 7d at room temperature with 2 equiv. of dimethyl acetylene dicarboxylate results in the mononuclear complex 12d in 5% yield. The molecular structure of 12b has been established by single crystal X-ray diffraction and comprises a tetra dentate ligand with two ferra-sulpha cyclobutene, and a ferra-disulpha cyclopentene moiety. When the reaction is performed at 60 °C a low yield of 2,3,4,5-thiophene tetramethyl tertracarboxylate is obtained besides complex 12d.  相似文献   

9.
《Inorganica chimica acta》2004,357(5):1444-1456
The complexes cis-[PdCl22-[C(H)PH3]2CO}] (2) in two different stereochemical arrangements (cisoid-cisoid, 2cc; cisoid-transoid, 2ct) have been studied by DFT methods at the B3LYP level. The (2cc) structure is energetically more stable than the (2ct), being the main responsible of the energy difference between the two complexes the energetic gap between the cc and ct isomers of the free bis-ylide ligand [H3PC(H)-C(O)-C(H)PH3] (1). In (1) these differences arise from the presence of 1,4-intramolecular interactions between the phosphorus atoms and the carbonyl oxygen. That is, the conformational preferences observed in (1) due to the establishment of 1,4-P?O interactions are directly transferred to the metallic complexes (2) in such a way that the most stable structure for the free ligand gives the most stable complex. In the absence of the carbonyl group (e.g. [H3PC(H)-C(CH2)-C(H)PH3] (3) or [H3PC(H)-CH2-C(H)PH3] (5)) all isomers of a given bis-ylide (cc, ct and tt) become isoenergetic. The absence of discrimination in the free bis-ylides (3) and (5) gives isoenergetic cc and ct structures for the corresponding complexes cis-[PdCl22-[C(H)PH3]2CCH2}] (4), cis-[PdCl22-[C(H)PH3]2CH2}] (6) and [CpNi{η2-[C(H)PH3]2CH2}] (7), as stated by NMR spectroscopy for (7). The influence of other factors (change of the heteroatom at Cβ, change of the P substituents) in the energy of the different isomers of the bis-ylides and in the energy of the corresponding complexes has also been studied and discussed.  相似文献   

10.
The arsonium-substituted isocyanides, o-(I+R3AsCH2)C6H4NC (AsR3=AsPh3, L1; AsMePh2, L2; AsMe2Ph, L3), were prepared by reaction of o-(chloromethyl)phenyl isocyanide, o-(CH2Cl)C6H4NC, with a slight molar stoichiometric amount of the arsine in the presence of a 3-fold excess of NaI in acetone at room temperature. The isocyanides L1-L3 coordinate to some Pt(II) complexes such as trans-[PtX{o-(I+R3AsCH2)C6H4NC}(PPh3)2] [BF4] (AsR3=AsPh3, 1; AsMePh2, 2; AsMe2Ph, 3; X=Cl, I) and [PtX{o-(I+R3AsCH2)C6H4NC}(Ph2PCHCHPPh2)] [BF4] (AsR3=AsMePh2, 4; X=Cl, I). Complexes 2-4 are converted in CH2Cl2 at room temperature in the presence of NEt3 to the corresponding indolidin-2-ylidene derivatives trans-[PtX{(AsR3)}(PPh3)2]BF4] (AsR3=AsPh3, 5; AsMePh2, 6; AsMe2Ph, 7) and [PtX{(AsMePh2)}(Ph2PCHCHPPh2)][BF4] (8).  相似文献   

11.
The platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1) was found to react with chelating N,N-ligands 2(RNCR)C5H4N (R/R=Ph/OH, H/Ph, Me/Ph) to form acyl(hydrido)platinum(IV) complexes [Pt(COMe)2Cl(H){2-(RNCR)C5H4N}] (R/R=Ph/OH 2a; H/Ph 2b; Me/Ph (2c)). Reactions of complex 1 with chelating S,S- and N,S-donors (RS-CH2-CH2-SR, 2-(RSCH2)C5H4N, R=Et, Ph, t-Bu) afforded acyl(chloro)platinum(II) complexes [Pt(COMe)Cl(RSCH2CH2SR)] (R=Et, 3a; Ph, 3b; t-Bu, 3c) and [Pt(COMe)Cl{2-(RSCH2)C5H4N}] (R=Et, 4a; Ph, 4b; t-Bu, 4c), respectively. All complexes were fully characterized by microanalysis, IR and NMR (1H, 13C) spectroscopy. Furthermore, molecular structures of complexes 3b and 4b were determined by single-crystal X-ray diffraction analyses revealing close to square-planar configuration. In complex 4b the acetyl ligand is trans to pyridine N atom (configuration index SP-4-2). The reactions are discussed in terms of consecutive oxidative addition and reductive elimination reactions.  相似文献   

12.
The ligands 1-hydroxymethylpyrazole (hl1), 1-(2-hydroxyethyl)pyrazole (hl2) and 1-(3-hydroxypropyl)pyrazole (hl3) react with [PdCl2(CH3CN)2] to give trans-[PdCl2(hl)2] compounds. Due to a hindered rotation around the Pd-bond, these compounds present two different conformations in solution: anti and syn. The conformation presented depends on the relative disposition of the hydroxyalkylic chains of the two pyrazolic ligands. The present study was carried out on the basis of NMR experiments. The present paper reports the crystal structure of trans-[PdCl2(hl2)2]. The synthesis and characterisation of compounds [Pd(hl)4](BF4)2 (hl = hl1, hl2 and hl3) starting from [Pd(CH3CN)4](BF4)2 and the corresponding chlorocomplexes trans-[PdCl2(hl)2] are also described.  相似文献   

13.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

14.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

15.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

16.
The hydroxo complex [NBu4]2[Ni2(C6F5)4(μ-OH)2] reacts with ammonium O,O-dialkyldithiophosphates, O-alkyl-p-methoxyphenyldithiophosphonate acids and ammonium O-alkylferrocenyldithiophosphonates in dichloromethane under mild conditions to give, respectively, [NBu4][Ni(C6F5)2{S(S)P(OR)2}] (R=Me (1), Et (2), iPr (3)) and [NBu4][Ni(C6F5)2{S(S)P(OR)Ar}] (Ar=p-MeOC6H4, R=Me (4), Et (5), iPr (6); Ar=ferrocenyl; R=Me (7), Et (8), iPr (9)). The monothiophosphonate nickel complexes [NBu4][Ni(C6F5)2{S(S)P(OR)(ferrocenyl)}] (R=Et (10), iPr (11)) are obtained by reaction of the hydroxo complex with O-alkylferrocenyldithiophosphonate acids. Analytical (C, H, N, S), conductivity, and spectroscopic (IR, 1H, 19F and 31P NMR, and FAB-MS) data were used for structural assignments. A single-crystal X-ray diffraction study of [NBu4][Ni(C6F5)2{S(S)P(OMe)(p-MeOC6H4)}] (4) and [NBu4][Ni(C6F5)2{S(O)P(OEt)(ferrocenyl)}] (10) shows that in both cases the coordination around the nickel atom es essentially square planar with NiC2S2 and NiC2SO central cores, respectively.  相似文献   

17.
Octahedral cis-Fe(CH3)2{2-(benzoyl)pyridyl-N,O}(PMe3)2 (1), square-pyramidal Co(CH3){2-(benzoyl)pyridyl-N,O}(PMe3)2 (2), and triangular-planar Ni{2-(benzoyl)pyridyl-η2-C,O}(PMe3)2 (3) have been synthesized by reaction of 2-benzoylpyridine with thermally labile Fe(CH3)2(PMe3)4 and Co(CH3)(PMe3)4 complexes. With Ni(CH3)2(PMe3)3, reductive elimination of ethane is observed when a η2-C,O-coordination is constituted. The complexes were investigated by NMR spectroscopic methods and the molecular structures of 1 and 2 were determined by X-ray crystallography.  相似文献   

18.
《Inorganica chimica acta》2004,357(7):1997-2006
Five new lanthanide complexes displaying crotonato bridges have been prepared: [Gd2(crot)6(H2O)4] · 4(bpa) (1); [Ho2(crot)7]n · (Hbpa) (2); [Gd2(crot)6(bipy)2] (3); [Ho2(crot)6(bipy)2] (4) and [Nd2(crot)6(H2O)3]n (5), where bipy=2,2-bipyridine; bpa=di(2-pyridyl)amine; crot=crotonato. The compounds were characterized by magnetic susceptibility measurements and their crystal structures were determined by single crystal X-ray diffraction. These studies showed complexes 1, 3 and 4 to be dimers while structures 2 and 5 are polymeric in nature.  相似文献   

19.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

20.
The reaction of [RuCl3(2mqn)NO] (H2mqn=2-methyl-8-quinolinol) with 2-chloro-8-quinolinol (H2cqn) afforded cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 1), cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) (complex 2) and a 1:1 mixture of cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) and cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 3). The reaction was compared with that of [RuCl3(2mqn)NO] with 8-quinolinol (Hqn) or 5-chloro-8-quinolinol (H5cqn). Photoirradiation reaction of complex 1 at room temperature in deaerated CH2Cl2 in the presence of NO gave trans-[RuCl(2cqn)(2mqn)NO] (the Cl is trans to the NO) and complex 2 with recovery of complex 1. The reaction was contrasted with that of cis-1 [RuCl(qn)(2mqn)NO] or cis-1 [RuCl(5cqn)(2mqn)NO]. The crystal structure of complex 1 was determined by X-ray diffraction. The reactions were examined under consideration of atomic charge of the phenolato oxygen in 8-quinolinol and its derivatives calculated at the restricted Hartree-Fock/6-311G** level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号