首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[Pt5(μ-CO)5(CO)L4] (L = PPh31, PPh2Bz 2, AsPh33, PEt34, PCy35) have been synthesized by reacting [Pt3(μ-CO)3(PR3)3] with H2O2 (1 and 2), by reduction of cis-[PtCl2(CO)(PEt3)] with Zn dust (4), and by the Zn reduction of [Pt3(μ-CO)3(PCy3)3] in the presence of [PtCl2(CH3CN)2] (5). Complex 5 has not been observed previously and has been characterized by X-ray crystallography. Oxidation of the phosphine ligands with H2O2 is a new way to synthesize 1 and 2. The first complete NMR characterization of these complexes has also been achieved, and showed that these pentanuclear cluster complexes exhibit similar stereochemistries in solution and in the solid state. The observed 1JPt-Pt values do not have any correlation with the corresponding bond lengths, again pointing out the irregular behaviour of such parameter in Pt complexes.  相似文献   

2.
The reaction of cyanamide and its derivatives with the (η5-C5H5)Mn(CO)2(THF) and (η5-C5H4CH3)Mn(CO)2(THF) complexes affords the cyanamide substituted complexes of types (η5-C5H5)Mn(CO)2(NCN(R′)(R″)) (2a-d) and (η5-C5H4CH3)Mn(CO)2(NCN(R′)(R″)) (3a-e). All complexes were characterized by spectroscopy (1H, 13C NMR, IR), elemental and mass spectroscopy analysis. Complex 2b5-C5H5)Mn(CO)2(NCN(CH3)2) was additionally examined by single crystal X-ray structure determination.  相似文献   

3.
The reaction of metallocene complexes of the type [η5:C5H4-(CH2)n-C6H5]2MCl2 (n=1-5; M=Zr, Hf) with EtLi gives the mono nuclear ethyl derivatives [η5:C5H4-(CH2)n-C6H5]2M(Et)Cl and the metallacycles [η5:C5H4-(CH2)n-C6H5][η5:C5H4-(CH2)n1:C6H4]MEt. A large excess of EtLi affords the dinuclear species [η5:C5H4-(CH2)n6:C6H5]2M2Cl2 (n=2-5). All types of complexes can be activated with methylalumoxane (MAO) and then be used for catalytic polymerization of ethylene.  相似文献   

4.
The benzaldehyde functionalized phosphine Ph2PC6H4CHO-2 underwent reaction with [(η5-C5Me5)MCl(μ-Cl)]2 (M=Rh, Ir) to form (η5-C5Me5)MCl2P-Ph2PC6H4CHO-2), which underwent activation of the aldehyde C-H bond to form (η5-C5Me5)MCl(κPC-Ph2PC6H4CO-2). Formally the reaction involves oxidative addition of C-H across the metal and reductive elimination of HCl. The structure of (η5-C5Me5)RhCl(κPC-Ph2PC6H4CO-2) has been determined by single-crystal X-ray diffraction.  相似文献   

5.
[Ir(η5-C5Me5)(C8H4S8)] (1) [ = 2-{(4,5-ethylenedithio)-1,3-dithiole-2-ylidene}-1,3-dithiole-4,5-dithionate(2−)] was reacted with iodine in dichloromethane to afford one-electron- and two-electron-oxidized species [IrI(η5-C5Me5)(C8H4S8)] (2), [IrI(η5-C5Me5)(C8H4S8)](I3) (3) and [IrI(η5-C5Me5)(C8H4S8)](I5) (4). The oxidized species exhibit electrical conductivities of (1.1-5.0) × 10−6 S cm−1 measured for compacted pellets at room temperature. The X-ray crystal structures of the two-electron-oxidized complexes 3 and 4 revealed the Ir-I bonds for both of them and the presence of for 3 and ions for 4 as the counter anions. They have many S-S and S-I non-bonding contacts to form two-dimensional molecular interaction sheets in the solid state.  相似文献   

6.
The bimetallic cyano-bridged [(η5-C5H5)(PPh3)2Ru(μ-CN)Ru(PPh3)25-C5H5)][PF6] (1) was prepared by reaction of [(η5-C5H5)(PPh3)2RuCl] with N,N′-bis(cyanomethyl)ethylenediamine. The single crystal structure determined by X-ray diffraction showed crystallization on the triclinic P1 space group with a perfect alignment of the cyanide bridges. This accentric crystallization was explored having in view the NLO properties at the macroscopic level, determined by the Kurtz Powder technique. Besides the very low efficiency values for the second harmonic generation, the value obtained for the bimetallic complex 1 showed to be higher than one of the parent complex [(η5-C5H5)(PPh3)2RuCN] (2).  相似文献   

7.
The reduction of ethanolic solutions of niobium pentachloride with zinc, followed by treatment with aqueous acids serves as a versatile entry into the aqueous solution chemistry of niobium. From the zinc-reduced solution, the major intermediate, Nb42-O)22-OC2H5)4Cl4(OC2H5)4(HOC2H5)4, was isolated and the crystal structure determined by X-ray crystallography. The complex crystallizes in the orthorhombic space group Pccn, with Z=4, a=21.0105(9), b=11.0387(5), c=19.1389(8), V=4438.9(3) Å3, Mr=1090.19,R1=0.0327 and wR2=0.0876. The structure revealed a centrosymmetric tetrameric Nb(IV) complex, consisting of a pair of edge-sharing bi-octahedral Nb22-OC2H5)4Cl2(OC2H5)2(HOC2H5)2 units that are joined by two axial oxo ligands. The Nb-Nb distance of 2.7458(3) Å is consistent with a single metal-metal bond.  相似文献   

8.
The metal-sulfur bonding present in the transition metal-thiolate complexes CpFe(CO)2SCH3, CpFe(CO)2StBu, CpRe(NO)(PiPr3)SCH3, and CpRe(NO)(PPh3)SCH3 (Cp = η5-C5H5) is investigated via gas-phase valence photoelectron spectroscopy. For all four complexes a strong dπ-pπ interaction exists between a filled predominantly metal d orbital of the [CpML2]+ fragment and the purely sulfur 3pπ lone pair of the thiolate. This interaction results in the highest occupied molecular orbital having substantial M-S π antibonding character. In the case of CpFe(CO)2SCH3, the first (lowest energy) ionization is from the Fe-S π orbital, the next two ionizations are from predominantly metal d orbitals, and the fourth ionization is from the Fe-S π orbital. The pure sulfur pπ lone pair of the thiolate fragment is less stable than the filled metal d orbitals of the [CpFe(CO)2]+ fragment, resulting in a Fe-S π combination that is higher in sulfur character than the Fe-S π combination. Interestingly, substitution of a tert-butyl group for the methyl group on the thiolate causes little shift in the first ionization, in contrast to the shift observed for related thiols. This is a consequence of the delocalization and electronic buffering provided by the Fe-S dπ-pπ interaction. For CpRe(NO)(PiPr3)SCH3 and CpRe(NO)(PPh3)SCH3, the strong acceptor ability of the nitrosyl ligand rotates the metal orbitals for optimum backbonding to the nitrosyl, and the thiolate rotates along with these orbitals to a different preferred orientation from that of the Fe complexes. The initial ionization is again the M-S π combination with mostly sulfur character, but now has considerable mixing among several of the valence orbitals. Because of the high sulfur character in the HOMO, ligand substitution on the metal also has a small effect on the ionization energy in comparison to the shifts observed for similar substitutions in other molecules. These experiments show that, contrary to the traditional interpretation of oxidation of metal complexes, removal of an electron from these metal-thiolate complexes is not well represented by an increase in the formal oxidation state of the metal, nor by simple oxidation of the sulfur, but instead is a variable mix of metal and sulfur content in the highest occupied orbital.  相似文献   

9.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

10.
The determination of the solid state structure of Cp*Ru(2,4-dimethyl-η5-pentadienyl) (1), where Cp* = pentamethylcyclopentadienyl, fills the gap in the series of previously established structures of closely related compounds. Compound 1 does not exhibit the ideal CS symmetry and its conformation is intermediate between the CS-synperiplanar eclipsed and CS-antiperiplanar arrangements of the ligands. Density functional theory studies indicate that the CS-synperiplanar eclipsed, CS-antiperiplanar, and intermediate conformations of 1 and Cp*Rh(2,4-dimethyl-η5-pentadienyl)+ (2) do not differ by more than a few tenths of 1 kcal/mol. The geometrical features of cation 2 are similar to those of 1, and in both complexes the pentadienyl ligands are not planar. The metal-carbon distances to the Cp* ligands in 1 and 2 are comparable, while the metal-carbon distances to the pentadienyl moiety are somewhat shorter in the Ru complex. A study of the conformational flexibility of the Cp* ligand in 5610 organometallic complexes showed that it usually shields the central metal by 36.2(10)%, provided the metal-centroid(Cp*) distances are normalized to 2.28 Å. The corresponding values in 1 and 2 are 37.2% and 37.4%, respectively.  相似文献   

11.
Photoirradiation with a 150 W medium-pressure Hg lamp for 17 h in acetontrile as the solvent replaces the benzene ligand in the cationic complexes [(η6-C6H6)Ru(CH3CN)2(L)]2+ and [(η6-C6H6)Ru(CH3CN)(L2)]2+ (L=CH3CN, PPh3, L2=dppe, bipy) with acetonitrile. These replacements are equally clean to those reported before for analogous CpRu+ complexes. Crystal structures of the products obtained are included.  相似文献   

12.
[Ir(η5-C5Me5)(C3S5)] [C3S52− = 4,5-disulfanyl-1,3-dithiole-2-thionate(2−)] was prepared by a reaction of [NMe4]2[C3S5] with [Ir(η5- C5Me5)Cl2]2 in ethanol. It was reacted with bromine to afford a paramagnetic species [IrBr(η5-C5Me5)(C3S5)] with the Ir-Br bond and in the one-electron-oxidized state, and a diamagnetic dinuclear species [IrBr(η5-C5Me5)(μ-C2S4)IrBr(η5-C5Me5)]. ESR spectra for the one-electron-oxidized species in solution are discussed. The X-ray crystal structural analysis for the latter complex revealed the geometry consisting of dinuclear IrBr(η5-C5Me5) moieties bridged by the C2S42− ligand.  相似文献   

13.
Reactions of [Re2(CO)10] with Me3NO and diphosphines [Ph2P(CH2)nPPh2, n=1-6] yield mixtures of the monodentate-coordinated diphosphine complexes [Re2(CO)91-P-P)] (P-P=Ph2P(CH2)nPPh2, n=1-6) (yields 5-40%) and bridged dimers [{Re2(CO)9}2(μ-P-P)] (5-50%). These complexes were isolated as either equatorial or axial isomers, or a mixture of two isomers. Reactions of the monodentate complexes with Me3NO yield close-bridged complexes [Re2(CO)8(μ-P-P)] and phosphine oxide complexes [Re2(CO)9{P-P(O)}]. The structures of the close-bridged complexes 1 (n=3) and 2 (n=4), were determined by X-ray crystallography. The Re-Re bond in the close-bridged complex with the longest phosphine chain (n=6) is readily cleaved in CDCl3 to give the complex [{cis-ReCl(CO)4}2(μ-dpph)] (3) as the product, the structure of which was also determined by X-ray crystallography.  相似文献   

14.
A method for the synthesis of titanocene (IV) aryl carboxylate complexes is presented in this paper. It is based on the fact that alcohol can catalyze the reaction between Cp2TiCl2 and aryl carboxylate ligands in the presence of sodium hydroxide (NaOH). The effects of the catalyst on the reaction system were studied and the possible reaction mechanism was proposed. This method was used to prepare a series of titanocene (IV) aryl carboxylate complexes and a macrocyclic titanocene (5,5′-dithiodisalicylato titanocene), whose structure was determined by X-ray diffraction analysis.  相似文献   

15.
A hypothesis of Gryglewski et al. explains the correlation between increased level of LDL and development of atherosclerosis by inhibition of PGI2 synthesis by increased peroxide content of LDL. The aim of the present paper was to examine this hypothesis. The major results are: 1) Preparation of LDL in the presence of .02 % butylated hydroxytoluene did not reduce the lipid peroxide content of LDL from men and women and not change the inhibition or stimulation of the in vitro biosynthesis of PGI2 by LDL isolated from blood of men or women, respectively. 2) In the LDL and HDL, respectively, of healthy men we found nearly the same lipid peroxide levels (nmole malondialdehyde (MDA)/mg lipoprotein-cholesterol) as in the lipoproteins of male patients with hyperlipidemia type IIa or IV, but the peroxide concentration is three times higher in HDL as in LDL. 3) LDL isolated from healthy men inhibited in dose dependent fashion the generation of PGI2 from PGH2 by aortic microsomes whereas LDL from premopausal women stimulated PGI2 formation even calculated as LDL lipid peroxides (in nM MDA/ml). The results call into question the hypothesis that diminished PGI2 formation by atherosclerotic vessels is related to inhibition of PGI2 synthetase by lipid peroxides present in LDL in the lesions. A new working hypothesis is presented that also the fatty acid pattern and the lipid class composition in the LDL are important for their influence on the PGI2 formation.  相似文献   

16.
The U4+ cyclooctatetraenyl complex, [(C5Me5)(C8H8)U]2(μ-C8H8), 1, reacts with two equiv of 4,4′-dimethyl-2,2′-bipyridine (Me2bipy) and 2 equiv of 2,2′-bipyridine (bipy) to form 2 equiv of (η5-C5Me5)(η8-C8H8)U(Me2bipy-κ2N,N′) and (η5-C5Me5)(η8-C8H8)U(bipy-κ2N,N′), respectively. X-ray crystallography, infrared spectroscopy, and density functional theory calculations indicate that the products are best described as U4+ complexes of bipyridyl radical anions. Hence, only one of the (C8H8)2− ligands in 1 acts as a reductant and delivers 2 electrons per equiv of 1. Since the reduction potentials of uncomplexed (C8H8)2−, Me2bipy, and bipy are −1.86, −2.15, and −2.10 V vs SCE, respectively, it is likely that prior coordination of the bipyridine reagents enhances the electron transfer.  相似文献   

17.
《Inorganica chimica acta》2004,357(2):571-580
Treatment of the ligand N-(2-mercaptoethyl)-3,5-dimethylpyrazole with [Pd(CH3COO)2]3 and reaction of [PdCl(μ-med)]2 with pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 produced the following complexes: [Pd(CH3COO)(μ-med)]2, [Pd(μ-med)(py)]2(BF4)2 and [Pd(μ-med)(PPh3)]2(BF4)2. Similar reactions carried out with 2,2-bipyridine (bpy) or 1,3-bis(diphenylphosphino)propane (dppp) produced [Pd(μ-med)(bpy)]x(BF4)x (x=1 or 2) and [Pd(μ-med)(dppp)]x(BF4)x (x=1 or 2). Treatment of [Pd(μ-med)(bpy)]x(BF4)x with [PdCl2(CH3CN)2] produced [Pd3Cl2(μ-med)2(bpy)2](BF4)2. Treatment of [Pd(μ-med)(dppp)]x(BF4)x with [PdCl2(CH3CN)2] produced a mixture of [Pd(μ-Cl)(dppp)]2(BF4)2 and [Pd(μ-med)2(dppp)]2+. X-ray crystal structures of [Pd(μ-med)(PPh3)]2(BF4)2 · 2CH3CN and [Pd(μ-med)(bpy)]2(BF4)2 · 0.5CH3OH are presented.  相似文献   

18.
《Inorganica chimica acta》2004,357(10):3119-3123
Fused double-cluster [(η5-C5Me5)IrB18H18(PH2Ph)] (8), from syn-[(η5-C5Me5)IrB18H20] (1) and PH2Ph, retains the three-atoms-in-common cluster fusion intimacy of 1, in contrast to [(η5-C5Me5)HIrB18H19(PHPh2)] (6), from PHPh2 with 1, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound 8 forms via spontaneous dihydrogen loss from its precursor [(η5-C5Me5)HIrB18H19(PH2Ph)] (7), which has two-atoms-in-common cluster-fusion intimacy and is structurally analogous to 6.  相似文献   

19.
Routes to the synthesis of the mixed sulfide-phenylthiolate complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ have been explored; reaction of [Pt2(μ-S)2(PPh3)4] with excess Ph2IBr proceeds readily to selectively produce this complex, which was structurally characterised as its PF6 salt. Reactions of [Pt2(μ-S)2(PPh3)4] with other potent arylating reagents (1-chloro-2,4-dinitrobenzene and 1,5-difluoro-2,4-dinitrobenzene) also produce the corresponding nitroaryl-thiolate complexes [Pt2(μ-S){μ-SC6H2(NO2)2X}(PPh3)4]+ (X = H, F). The complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ reacts with Me2SO4 to produce the mixed alkyl/aryl bis-thiolate complex [Pt2(μ-SMe)(μ-SPh)(PPh3)4]2+, but corresponding reactions with the nitroaryl-thiolate complexes are plagued by elimination of the nitroaryl group and formation of [Pt2(μ-SMe)2(PPh3)4]2+. [Pt2(μ-S)(μ-SPh)(PPh3)4]+ also reacts with Ph3PAuCl to give [Pt2(μ-SAuPPh3)(μ-SPh)(PPh3)4]2+.  相似文献   

20.
The SS bond-activation of diorganyl disulfide by the anionic metal carbonyl fragment [Mn(CO)5] gives rise to an extensive chemistry. Oxidative decarbonylation addition of 2,2′-dithiobis(pyridine-N-oxide) to [Mn(CO)5], followed by chelation and metal-center oxidation, led to the formation of [MnII(SC5H4NO)3] (1). The effective magnetic moment in solid state by SQUID magnetometer was 5.88 μB for complex 1, which is consistent with the MnII having a high-spin d5 electronic configuration in an octahedral ligand field. The average Mn(II)S, SC and NO bond lengths of 2.581(1), 1.692(4) and 1.326(4) Å, respectively, indicate that the negative charge of the bidentate 1-oxo-2-thiopyridinato [SC5H4NO] ligand in complex 1 is mainly localized on the oxygen atom. The results are consistent with thiolate-donor [SC5H4NO] stabilization of the lower oxidation state of manganese (Mn(I)), while the O,S-chelating [SC5H4NO] ligand enhances the stability of manganese in the higher oxidation state (Mn(II)). Activation of SS bond as well as OH bond of 2,2′-dithiosalicylic acid by [Mn(CO)5] yielded [(CO)3Mn(μ-SC6H4C(O)O)2Mn(CO)3]2− (4). Oxidative addition of bis(o-benzamidophenyl) disulfide to [Mn(CO)5] resulted in the formation of cis-[Mn(CO)4(SR)2] (R=C6H4NHCOPh) which was employed as a chelating metallo ligand to synthesize heterotrinuclear [(CO)3Mn(μ-SR)3Co(μ-SR)3Mn(CO)3] (8) possessing a homoleptic hexathiolatocobalt(III) core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号