首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

2.
The polyphosphide anions in ethylenediamine/2,2,2-crypt, ethylenediamine/18-crown-6 and ethylenediamine/db18-crown-6 solutions are isolated as K[K(2,2,2-crypt)]3(HP7)2 · en (1), [K(18-crown-6)]2HP7 (2) and [K(db18-crown-6)]2HP7 · toluene (3). The mono-protonation of the P7 cluster is observed in all three compounds. The (HP7)2− units are stabilized by naked potassium in 1 and complexing potassium in 2 and 3. The significant C-H?P hydrogen bonding interaction is observed in 3, which is responsible for the 3-D supramolecular structure. The 3-D supramolecular structure is also contributed by the η2-interaction between K+ and the phenyl. The 31P and 1H NMR spectra of 1-3 indicate that the polyphosphide anions are very fluxional in solution.  相似文献   

3.
Complex fac-[RuCl3(NO)(P-N)] (1) was synthesized from the reaction of [RuCl3(H2O)2(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl3(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer,cis-[RuCl3(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo- or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated.The complexes were characterized by NMR (31P{1H}, 15N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The 31P{1H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The 1H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH2Cl2 solution presented 1866 and 1872 cm−1 for (1) and 1841 and 1860 cm−1 for (2). Electrochemical analysis revealed a irreversible reduction attributed to RuII-NO+ → RuII-NO0 at −0.81 V and −0.62 V, for (1) and (2), respectively; the process RuII → RuIII, as expected, is only observed around 2.0 V, for both complexes.Studies were conducted using 15NO and both complexes were isolated with 15N-enriched NO. Upon irradiation, the complex fac-[RuCl3(NO)(P-N)] (1) does not exchange 14NO by 15NO, while complex mer,trans-[RuCl3(NO)(P-N)] (2) does. Complex mer,trans-[RuCl3(15NO)(P-N)] (2′) was obtained by direct reaction of mer,trans-[RuCl3(NO)(P-N)] (2) with 15NO and the complex fac-[RuCl3(15NO)(P-N)] (1′) was obtained by thermal-isomerization of mer,trans-[RuCl3(15NO)(P-N)] (2′).DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%).  相似文献   

4.
Three new thiodiacetato-Cu(II) chelates have been synthesized and studied by X-ray crystallography and by thermal, spectral and magnetic methods. [Cu(tda)]n (1) is a 3D-polymer with a pentadentate tda, which acts with a fac-O2 + S(apical)-tridentate chelating conformation and as a twofold anti, syn-μ-η11 carboxylate bridge. In its square pyramidal Cu(II) coordination (type 4 + 1) four O(carboxylate) donors define a close regular square base, but the Cu-S(apical) bond deviates 27.4° from the perpendicular to the mean basal plane. Each anti,syn-bridging carboxylate group exhibits two C-O (average 1.26(1) Å) and two Cu-O bonds (average 1.958(7) Å), which are very similar in length to each other. In contrast, the mixed-ligand complexes of [Cu(tda)(Him)2(H2O)] (compound 2, distorted octahedral, type 4 + 1 + 1) and [Cu(tda)(5Mphen)] · 2H2O (compound 3, distorted square pyramidal, type 4 + 1) have molecular structures and the tda ligand displays only a fac-O2 + S(apical)-tridentate conformation. The Cu-S(apical) bond lengths (2.570(1), 2.623(1) or 2.573(1) Å for 1, 2 or 3, respectively) are shorter than those previously reported for closely related Cu(II)-tda derivatives. The different tda ligand roles in their Cu(II) derivatives are rationalized on the basis of crystal packing forces driving in the absence or presence of auxiliary ligands (with two or three N-donor atoms).  相似文献   

5.
Two new organic-inorganic hybrid compounds [Zn(phen)(SO4)(H2O)2]n (1) and [Cu(phen)(H2O)2] · SO4 (2) have been prepared by conventional aqueous solution synthesis and characterized by single-crystal X-ray diffraction, IR spectroscopy, thermal gravimetric analysis (TGA) and fluorescent spectroscopy. In compound 1, the sulfate group adopts bidentate mode to coordinate with two Zn(II) ions to form one-dimensional polymer. The one-dimensional polymers are further linked together via the intermolecular hydrogen-bonding and π-π stacking interactions to form a 3D supramolecular framework. Compound 2 is build up of discrete [Cu(phen)(H2O]2+ cations and SO42− anions to form a three-dimensional framework via hydrogen-bonding and π-π stacking interactions. Furthermore, the luminescent properties of both 1 and 2 were studied. The complexes 1 and 2 excited at 280 nm wavelength produced characteristic luminescence features, arising maybe due to the π-π transitions.  相似文献   

6.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

7.
The reaction of [RuIII(edta)(H2O)] (edta4− = ethylenediaminetetraacetate) and [RuIII(hedtra)(H2O)] (hedtra3− = N-hydroxyethylethylenediaminetriacetate) with various purine based 5′-nucleotides (Nu) viz. adenosin-5′-monophosphate (AMP), guanosin-5′-monophosphate (GMP), inosin-5′-monophosphate (IMP) was studied kinetically as a function of [Nu] at various temperatures (15-35 °C) at a fixed pH (4.5). Kinetic results suggest that the binding of 5′-nucleotides takes place in a rapid [Nu] dependent rate-determining step. Kinetic data and activation parameters are accounted for the operation of an associative mechanism. The antitumor activities of both [RuIII(edta)(H2O)] (1) and [RuIII(hedtra)(H2O] (2) have been evaluated using MCF-7 (breast cancer), NCI-H460 (lung cancer) and SF-268 (CNS) cell lines.  相似文献   

8.
Novel bipyridine-type linking ligands L1 ((4-py)-CHN-C10H6-NCH-(4-py)) and L2 ((3-py)-CHN-C10H6-NCH-(3-py)), a pair of isomers due to possessing different pairs of terminal pyridyl groups, were prepared by the Schiff-base condensation. In ligand L1, the N?N separation between the terminal pyridyl groups is 16.0 Å, with their nitrogen donor atoms at the para positions (4,4′). The corresponding N?N separation in ligand L2 is 14.2 Å, with the nitrogen donor atoms at the meta positions (3,3′). 1-D zigzag-chain coordination polymers [Zn(L1)(NO3)2] (1) and [Zn(L2)(NO3)2] (2) were prepared by reactions of Zn(NO3)2 · 6H2O with ligands L1 and L2, respectively, by solution diffusion. Polymer 3, [Cd(L1)1.5(NO3)2], prepared from Cd(NO3)2 · 4H2O and L1, exhibits a 1-D ladder structure, whose repeating ladder unit consists of four Cd metals and four L1 ligands to create a large 76-membered ring with dimensions of 20.8 × 20.8 Å. All products were structurally characterized by X-ray diffraction.  相似文献   

9.
Two new tetrahedral tungsten cyanide cluster compounds, [Cu(dien)]3[W4Te4(CN)12] · 9H2O (1) (dien=diethylenetriamine) and [Ni(en)(NH3)]3[W4Se4(CN)12] · 7.5H2O (2) (en=ethylenediamine), were synthesized by treating aqueous solutions of the saltlike cluster compound K6[W4Te4(CN)12] · 5H2O/K6[W4Se4(CN)12] · 6H2O with copper(II)/nickel(II) chloride in aqueous ammonia containing dien/en. The cyano-bridged layered coordination polymeric compounds were characterized by single-crystal X-ray diffraction analysis: monoclinic, space group P21 for 1; trigonal, space group for 2. Structures of 1 and 2 consist of infinite neutral layers of cluster components {W4Te4(CN)12}/{W4Se4(CN)12} connected, one another by {Cu(dien)} or {Ni(en)(NH3)} fragments, respectively.  相似文献   

10.
A dissymmetrical double Schiff base Cu(II) mononuclear complex: CuHL (1) (where H3L is N-3-carboxylsalicylidene-N-salicylaldehyde-1,2-diaminoethane) and two trinuclear complexes: [CuL(H2O)CoCuL] · H2O · CH3OH (2) and [(CuL)2Ni] · 2H2O (3) have been synthesized and characterized by means of elemental analyses, IR and electronic spectra. The crystal structures of two heterotrinucler complexes were determined by X-ray analysis. Each dissymmetrical cell unit of the complex 2 contains two heterotrinucler neutral molecules. In each neutral molecule, the central Co2+ ion is located at the site of O6 with a distorted octahedral geometry and one terminal Cu2+ ion at the four-coordination site of N2O2, but the other one at the square-pyramidal environment of N2O3. Each dissymmetrical unit of the complex 3 contains a heterotrinucler neutral molecule, whose structure is similar to that of 2 except two terminal Cu2+ ions both at the inner site of N2O2. The magnetic properties of two heterotrinucler complexes have been determined in the temperature range of 5-300 K, which indicate that the interaction between the central Co2+ ion or Ni2+ ion and the outer Cu2+ ions is antiferromagnetic. The exchange integrals are equal to −26.2 cm−1 for 2 and −50.6 cm−1 for 3.  相似文献   

11.
Reaction of 4-amino-6-methyl-1,2,4-triazin-thione-5-one (AMTTO, 1) with 2-thiophenecarboxaldehyde and 2-furaldehyde led to the corresponding iminic compounds 6-methyl-4-[thiophene-2-yl-methylene-amino]-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (TAMTTO, 2) and 4-[furan-2-yl-methylene-amino]-6-methyl-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (FAMTTO, 3). Treatment of 2 with AgNO3 gave the complex [Ag2(TAMMTO)4](NO3)2 · 4MeOH (4) and of 2 and 3 with [Ag(PPh3)2]NO3 gave the complexes [Ag(TAMTTO)(PPh3)2]NO3 · 1.5THF (5) and [Ag(FAMTTO)(PPh3)2]NO3 (6), respectively. All the compounds have been characterized by elemental analyses, IR spectroscopy and mass spectrometry. Compound 2 and all the complexes have been characterized by X-ray diffraction studies, respectively. In addition, 5 and 6 have been characterized by 31P NMR spectroscopy. Crystal data for 2 at −80 °C: monoclinic, space group C2/c, a=2319.6(2), b=609.8(1), c=1673.6(2) pm, β=106.14(1)°, Z=8, R1=0.0523; for 4 at −80 °C: triclinic, space group , a=877.6(1), b=1085.2(1), c=1557.7(2) pm, α=77.14(1)°, β=80.87(1)°, γ=78.18(1)°, Z=1, R1=0.0407; for 5 at 20 °C: triclinic, space group , a=1151.1(2), b=1225.1(2), c=1887.4(3) pm, α=78.04(1)°, β=86.20(1)°, γ=76.03(1)°, Z=2, R1=0.0662; for 6 at −80 °C: triclinic, space group , a=1189.7(2), b=1387.8(2), c=1410.9(2) pm, α=94.74(2)°, β=95.12(2)°, γ=112.41(2)°, Z=2, R1=0.0511.  相似文献   

12.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

13.
The preparation, crystal structures and magnetic properties of three copper(II) compounds of formulae [Cu2(dmphen)2(dca)4] (1), [Cu(dmphen)(dca)(NO3)]n (2) and [Cu(4,4-dmbpy)(H2O)(dca)2] (3) (dmphen=2,9-dimethyl-1,10-phenanthroline, dca=dicyanamide and 4,4-dmbpy=4,4-dimethyl-2,2-bipyridine) are reported. The structure of 1 consists of discrete copper(II) dinuclear units with double end-to-end dca bridges whereas that of 2 is made up of neutral uniform copper(II) chains with a single symmetrical end-to-end dca bridge. Each copper atom in 1 and 2 is in a distorted square pyramidal environment: two (1) or one (2) nitrile-nitrogen atoms from bridging dca groups, one of the nitrogen atoms of the dmphen molecule (1 and 2) and either one nitrile-nitrogen from a terminal dca ligand (1) or a nitrate-oxygen atom (2) build the equatorial plane whereas the second nitrogen atom of the heterocyclic dmphen fills the axial position (1 and 2). The copper-copper separations through double (1) and single (2) end-to-end dca bridges are 7.1337(7) (1) and 7.6617(7) (2). Compound 3 is a mononuclear copper(II) complex whose structure contains two neutral and crystallographically independent [Cu(4,4-dmbpy)(H2O)(dca)2] molecules which are packed in two different layer arrangements running parallel to the bc-plane and alternating along the a-axis. The copper atoms in both molecules have slightly distorted square pyramidal surroundings with the two nitrogen atoms of the 4,4-dmbpy ligand and two dca nitrile-nitrogen atoms in the basal plane and a water oxygen in the apical position. A semi co-ordinated dca nitrile-nitrogen from a neighbour unit [2.952(6) Å for Cu(2)-N] is in trans position to the apical water molecule in one of the two molecules, this feature representing part of the difference in supramolecular connections in the alternating layers referred to above. Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K reveal the occurrence of weak antiferromagnetic interactions through double [J=−3.3 cm−1 (1), ] and single [J=−0.57 cm−1 (2), ] dca bridges and across intermolecular contacts [θ=−0.07 K (3)].  相似文献   

14.
Metal-sulfur complex fragments, to which small molecules like N2, N2H2, N2H4, NH3, or CO can bind, are desirable model compounds concerning enzymatic N2 fixation.This paper reports on the effects of the phosphane co-ligand on formation and reactivity of [Ru(L)(PR3)(`N2Me2S2')] [`N2Me2S2'2−=1,2-ethanediamine-N,N-dimethyl-N,N-bis(2-benzenethiolate)(2−)] complexes with nitrogenase relevant ligands, especially N2, N2H4, NH3, and CO.Treatment of [Ru(NCCH3)4Cl2] with Li2`N2Me2S2', excessive LiOMe, bulky PPh3 or PCy3, respectively, led to the formation of two series of [Ru(L)(PR3)(`N2Me2S2')] complexes [for R=Ph: 1b, 1c (L=NCCH3), 6b (L=N2H4), 7b (L=N2), 8b1-3 (L=CO), 9b (L=NH3); for R=Cy: 1a (L=NCCH3), 6a (L=N2H4), 7a (L=N2), 8a (L=CO), 9a (L=NH3)]. While the use of PPh3 (θ=145°) yielded cis,trans and cis,cis isomers of [Ru(NCCH3)(PPh3)(`N2Me2S2')] (1b, 1c), no isomer formation was observed with the bulkier phosphane PCy3 (θ=170°). Sterically less demanding phosphanes (θ=118-132°) afforded bisphosphane complexes [Ru(PR3)2(`N2Me2S2')] [2d (R=Me), 2e (R=Et), 2f (R=nPr), and 2g (R=nBu)], which were practically inert and could only be converted in two cases and under drastic reaction conditions into the CO complexes [Ru(CO)(PR3)(`N2Me2S2')] [4e (R=Et), 4f (R=nPr)]. The chelating bidentate phosphane dppe (bisdiphenylphosphanoethane) yielded exclusively the mononuclear complex [Ru(dppe)(`N2Me2S2')] (3).  相似文献   

15.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

16.
Two novel complexes, Cd(HTMA)(NC5H5)2 · 0.5CH3OH · 0.5DMF (1) and Cd(HTMA) · 2H2O (2), of cadmium (II)-trimesates are obtained from slow vapor diffusion and urea hydrolysis, respectively. The Cd(II) centers in the two complexes are bridged by three separate HTMA3− ligands using a same coordination fashion, which contains one monodentate and two chelating bidentate carboxyl groups to form the herringbone-like motif. The herringbone-like motif is further interlinked to construct the two-dimensional Cd(II)-HTMA layer, which is stacked by mutual π-stacking of pyridines for 1 and by hydrogen bond of waters for 2. Thermal stabilities of the two complexes were investigated and the results indicated that Cd(II)-TMA layers in the two complexes are stable still upon 190 °C.  相似文献   

17.
The reaction of neodymium diiodide NdI2 (1) with acetonitrile is accompanied by C-C coupling and formation of bis(ethylimine)ethylamine/acetonitrile complexes {[(MeCNH)2CMeNH2]NdI(MeCN)5}I2 (2) and {[(MeCNH)2CMeNH2]Nd(MeCN)6}I3 (3). Yields of the products are 9% and 50%, respectively. Probable scheme of the complexes formation is discussed. Treatment of 3 with 2 equiv. of 1 in THF affords NdI3(THF)3, hydrogen and monoiodide complex containing presumably bis(imide)amine ligand, NdI[(MeCN)2CMeNH2]. The X-ray analysis revealed that in the molecule of 2 one I anion is directly bonded to Nd3+ cation while two other Ianions are not in contact to the metal centre. The molecule of 3 is isostructural to previously obtained Dy and Tm analogues. All three I anions in it are located away from Nd3+ cation.  相似文献   

18.
Two new charge transfer salts of TTF with the counter anions [M(phen)(CN)4] (phen = 1,10-phenanthroline, M = Cr (I) and Fe (II)) are described. The structures consist of alternating stacks of dimerised TTF+ cations and [M(phen)(CN)4] anions and they are linked together by many short S?S contacts and hydrogen bonds. Within the organic stack, two dimerised TTF+ cations are arranged in a slipped face-to-face mode with short intra-dimer and long inter-dimer S?S distances. Strong antiferromagnetic exchange was found in the TTF+ dimers. Conductivity measurements show that compound I is a semiconductor.  相似文献   

19.
Reaction of O,O′-diisopropylphosphoric acid isothiocyanate (iPrO)2P(O)NCS with 2- or 3-aminopyridine leads to the new N-phosphorylated thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-Py, HLI; 3-Py, HLII). Reaction of the potassium salt KLI with Ni(II) in aqueous EtOH leads to the new complex Ni[2-PyNHC(S)NP(O)(OiPr)2-N(Py),N(P),O]2, where the metal cation is coordinated by two deprotonated ligands LI through the pyridine and phosphorylamide nitrogen atoms, and the PO oxygen atoms. Using KLII leads to an oligomeric (or polymeric) structure, where the Ni(II) cation is coordinated by two anionic ligands LII through the CS sulfur atoms and the P-N nitrogen atoms, and the pyridine nitrogen atoms of neighboring molecules. The new compounds were investigated by 1H and 31P{1H} NMR spectroscopy, and microanalysis. Single crystal X-ray diffraction studies showed HLI forms both intra- and intermolecular hydrogen bonds, which in turn lead to the formation of a polymeric chain. Moreover, π?π stacking interactions were observed between molecules of two neighboring chains.  相似文献   

20.
《Inorganica chimica acta》2004,357(8):2324-2330
The reactions of Me(Ph)SnCl2 and Et(Ph)SnCl2 with 2,6-diacetylpyridine bis(thiosemicarbazone) (H2DAPTSC) afforded the complexes [Me(Ph)Sn(HDAPTSC)]Cl · 1.25MeOH (1) and [Et(Ph)Sn(H2DAPTSC)]Cl2 · MeOH · H2O (2), respectively. Single-crystal X-ray crystallography showed that in both complexes the ligand, monodeprotonated in 1 and neutral in 2, is S(1),S(2),N(3),N(4),N(5)-coordinated, and the coordination geometry around the metal can be described as a distorted pentagonal bipyramid with the aryl and alkyl groups in axial positions. 1H and 119Sn NMR studies of solution in DMSO suggest that 2 dissociates completely in this solvent, while 1 evolves to the new complex [Me(Ph)Sn(DAPTSC)], with release of H2DAPTSC and Me(Ph)SnCl2. These conclusions were also supported by conductivity measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号