首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four novel coordination polymers, one-dimensional chains [M(PTE)2(N3)2]n (M = Mn for 1 and Co for 2), and two-dimensional layers [M(PTE)2(dca)2]n (M = Mn for 3 and Co for 4) (PTE = 1-(2,4-difluorophenyl-2-(1H-1,2,4-triazol-1-yl)ethanone, dca = dicyanamide anion, N(CN)2), have been synthesized under mild ambient conditions and structurally characterized by single crystal X-ray diffraction. In all four crystal structures, the metal atoms adopt octahedral coordination geometry with six nitrogen atoms from two monodentate PTE ligands and four azido (or dca) bridging ligands. The crystal structures of 1 and 2 are isostructural 1-D polymeric chains, alternatively linked by double end-on and double end-to-end azido bridges. However, the bent dca ligands as bidentate μ2-1,5 bridging ligands interlink the octahedral metal units to lead to 2-D (4,4) grid networks in 3 and 4. Temperature-dependent magnetic measurements in 2-300 K have been performed for these four polymers, and suggest alternative ferro- and antiferromagnetic couplings for end-on and end-to-end azido bridges in 1, and the dominant ferromagnetic coupling in 2, respectively. Both polymers 3 and 4 show weak antiferromagnetic exchanges through the μ2-1,5-dca bridges. The effects of auxiliary coligands on the structure and the nature of these magnetic exchanges are discussed in the light of the crystal structures in detail.  相似文献   

2.
A 1,4-disubstituted dibenzofuran derivative of 1,4,7,10-tetraazacyclododecane (cyclen), L1, has been prepared by the direct reaction of cyclen and chloroacetyldibenzofuran and the mono-substituted derivative, L2, by reaction of chloroacetyldibenzofuran and 1,4,7-tris(t-butoxycarbonyl)-1,4,7,10-tetraazacyclododecane followed by deprotection with trifluoroacetic acid. The ligands were characterized by 1H and 13C NMR spectroscopy, IR spectroscopy and mass spectrometry. The reaction of the 1,4-disubstituted dibenzofuran cyclen, L1, with Cu(ClO4)2·6H2O in methanol yielded crystals of [CuL1](ClO4)2·MeOH·1/2H2O that were suitable for single crystal structural analysis. The X-ray structure confirmed that the 1,4-disubstituted dibenzofuran cyclen had been formed. The copper(II) coordination sphere in the complex cation, [CuL1]2+, is occupied by four nitrogen atoms from the macrocycle and an amide oxygen donor from one dibenzofuran pendant group. As is typical for copper(II)-cyclen complexes, the Cu(II) centre sits above the plane of the macrocycle nitrogen towards the oxygen donor, in this case by 0.5 Å. Fluorescence emission studies indicate that coordination of the macrocycle to either copper(II) or zinc(II) results in a decrease in emission with respect to the emission of the pure ligand.  相似文献   

3.
Three 1-D transition metal-nitronyl nitroxide radical complexes with dicyanoaurate(I) bridges, [M(NIT3py)2][Au(CN)2]2 [NIT3py = 2-(3′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, M = Mn, Co, Zn (1-3)], were synthesized and structurally characterized. Three compounds are all isostructural in monoclinic, C2/c space group with Z = 4. The [Au(CN)2] anions link [M(NIT3py)2] units via μ2-bridging mode, leading to a linear coordination chain. The M(II) ion adopts a distorted octahedral geometry with four N atoms from [Au(CN)2] groups and two pyridyl-N atoms from NIT3py ligands. The magnetic behavior shows that the couplings are both weak antiferromagnetic between Mn(II) and NIT3py and between Co(II) and NIT3py.  相似文献   

4.
The cobalt(III) complexes of 4,11-diacetato-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (1), [Co(1)]PF6, and 4,11-diacetamido-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (2), [Co(2)][PF6]3, have been synthesized and characterized. The crystal structure of [Co(1)]PF6 consists of an octahedral cobalt(III) cation coordinated to all four ligand nitrogen donors in the macrobicycle’s cavity, as well as to the deprotonated carboxylate oxygen atoms of both pendant arms. Analytical and spectroscopic data indicates that the ligand in [Co(2)][PF6]3 is not deprotonated, suggesting coordination through the amide carbonyl oxygens. Study of the electronic spectra of these novel complexes and comparison with data from related cobalt(III) complexes characterizes the ligands as strong field with Δ0=24,040 and Δ0=24,250 cm−1 for 1 and 2, respectively. Cyclic voltammograms were obtained for both complexes with large variations observed due to the differences in ligand charge and coordination.  相似文献   

5.
Two unique bimetalic Pt(II) coordination polymers of composition [Ni(hydeten)2Pt(CN)4] (Ni-Pt) and [Cu(hydeten)2Pt(CN)4] (Cu-Pt) [hydeten = N-(2-hydroxyethyl-ethylenediamine) or 2-(2-aminoethylamino)ethanol] have been synthesized and structurally characterized by various methods in this study. The crystal structure of Cu-Pt was determined by single-crystal X-ray diffraction analysis. The structure of Cu-Pt forms of infinite 2,2-TT type [-Cu(hydeten)2-NC-Pt(CN)2-CN-] chains containing paramagnetic copper atoms bridged by tetracyanoplatinate species. In this complex, Cu(II) centers display an axially elongated octahedron with two chelating hydeten molecules in the equatorial positions and N-bonded bridging cyano groups in the axial positions, whereas Pt(II) centers are four coordinate with four cyanide-carbon atoms in a square-planar arrangement. The decrease of the moments of these complexes in temperature range of 50 305 K can assigned to the antiferromagnetic interactions in the structures. The thermal decomposition of Cu-Pt comprise of five distinguished stages, while the thermal decomposition of Ni-Pt take place four different stages.  相似文献   

6.
The novel methylphosphonic acid monoethylester (H4dotpOEt) has been synthesized and characterized and their complexes with Sm(III) and Ho(III) ions were studied. Dissociation constants of the ligand are lower than those of H4dota. The stability constants of the Ln(III)-H4dotpOEt complexes are surprisingly much lower that those of H4dota (H4dota = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) probably due to a lower coordination ability of the phosphonate monoester groups. Acid-assisted decomplexation studies have shown that both complexes are less kinetically inert than the H4dota complexes, but still much more inert than complexes of open-chain ligands. Nevertheless, the synthesis of 153Sm and 166Ho complexes with this ligand led to stable complexes both in vitro and in vivo. A very low binding of these complexes to hydroxyapatite (HA) and calcified tissues was observed confirming the assumption that a fully ionized phosphonate group(s) is necessary for a strong bone affinity. Both complexes show similar behaviour in vivo and, in general, follow the biodistribution trend of the H4dota complexes with the same metals.  相似文献   

7.
A 2D honeycomb-like compound [Fe(CN)6{Cu(apn)}3]n(ClO4)2n(H2O)4n (1) (apn=N-(3-aminopropyl)-1,3-propanediamine) and a pentanuclear compound [Fe(CN)6{Cu(dmen)2}4](ClO4)4 (2) (dmen=N,N-dimethylethylenediamine) have been prepared and characterized. In the synthesis, the use of ferricyanide or ferrocyanide yielded identical products due to reduction of Fe(III) ion to Fe(II) in water. For 1, all cyanide groups of ferrocyanide are bonded to six Cu(II) ions of which two symmetry-related Cu atoms are linked to nitrogen atoms of cyanide ligands bound to the neighboring Fe(II) center, resulting in the honeycomb structure. The variations of the geometries around Cu(II) centers are between ideal trigonal bipyramidal and square pyramidal structures, which may arise from the relative structural arrangements of flexible apn ligands. For 2, all the Cu(II) ions can be seen as square pyramidal geometries composed of basal least-squares planes from four dmen nitrogen atoms and apical nitrogen atoms from cyanide bridge. The Cu-NC angle around Cu centers in 2 is 127.9(7)°, much acuter than that of 1, which is presumably associated with steric interactions between the bulky methyl groups of the dmen ligands on the neighboring Cu ions. Both compounds exhibit very weak antiferromagnetic interactions in the low temperature range.  相似文献   

8.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

9.
1,10-Phenanthroline hydrogen phthalato manganese(II) dimer [Mn2(Hphth)2(phen)4] · 2Hphth · 6H2O (1), monomeric phenanthroline phthalato manganese(II) monomer [Mn(phth)(phen)2(H2O)] · 2.5H2O (2), 2,2′-bipyridine phthalato manganese(II) polymer [Mn(phth)(bpy)(H2O)2]n (3) and 1,10-phenanthroline maleato polymer [Mn(male)(phen)(H2O)2]n · 2nH2O (4) (H2phth = o-phthalic acid, male = maleic acid, phen = 1,10-phenanthroline and bpy = 2,2′-bipyridine) have been synthesized and characterized spectroscopically and structurally. Each Mn(II) atom in dimeric 1 is octahedrally coordinated by two oxygen atoms of phthalate anions and by two cis-phenanthroline ligands. The hydrogen phthalato anion bridges the Mn(II) ions through the deprotonated carboxyl groups, while the carboxylic acid group remains free. In the monomeric 2, the Mn(II) ion is octahedrally surrounded by four nitrogen atoms from two cis-phen ligands, one carboxyl oxygen from a monodentate phth ion, and one coordinated water molecule. The dimeric phthalato complex 1 can be cleaved into monomer 2 under heating with deprotonation, and the course of the reaction can be qualitatively traced by IR spectra. The phthalate group in the complex 3 binds to two manganese atoms through the vicinal carboxyl-oxygen atoms in syn-syn bridging mode. The Mn(II) atoms are linked by the phthalate group to yield a one-dimensional chain running along the a-axis. The coordination polymer 3 can be obtained from the reaction of dichloro dibipyridine manganese with phthalate under heating. In polymer 4, the manganese atom is six-coordinated by two nitrogen atoms from phen, two oxygen atoms from the coordinated water molecules and two oxygen atoms from two different maleate dianions. Each maleato unit links two neighboring manganese atoms to yield one-dimensional chain along b-axis in bis-monodentate mode. The single-chain polymer 4 prepared at low temperature can be converted to double-chain coordination polymer [Mn(male)(phen)]n · nH2O (5) with dehydration in warm solution.  相似文献   

10.
Three new one-dimensional copper coordination polymers have been prepared and fully characterized by single-crystal X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and magnetic susceptibility measurements. The structure of [Cu(CN)2(bpy)] (1) (bpy = 2,2-bipyridyl) (monoclinic P21/c, a = 8.9761(7) Å, b = 16.731(1) Å, c = 8.0224(6) Å, β = 114.437(1)°) consists of Cu(II) metal centers coordinated by three cyanide ligands and chelated by one bpy to form the monomers Cu(CN)3(bpy) with distorted square pyramidal geometry. Each monomer shares two cyanide ligands with two adjacent monomers to form infinite -Cu(II)-CN-Cu(II)-CN-Cu zigzag chains along the c-axis. The one-dimensional structure of [Cu(CN)(bpy)] (2) (hexagonal P32, a = 14.4883(6) Å, b = 12.921(1) Å) is built of tetrahedral Cu(CN)2bpy metal complexes in which Cu(I) metal centers are coordinated by one nitrogen and one carbon from two different CN ligands, and two nitrogens from one bpy. The two CN ligands act as bridging ligands between adjacent monomers to form helical chains along the 32 screw axis. The crystal structure of [Cu2Cl(CN)(bpy)] (3) (orthorhombic Pbca, a = 17.853(2) Å, b = 6.9724 (9) Å, c = 18.7357 (9) Å) consists of two monomers, CuCl2(CN) and Cu(bpy)(CN) that share a cyanide ligand to form Cu2Cl2(CN)(bpy) dimers. The dimers link to each other by sharing Cl ligands leading to the formation of infinite Cu-Cl-Cu chain decorated by the complex Cu(CN)(bpy). Variable-temperature magnetic measurement shows an overall ferromagnetic behavior for compound 1. The magnetic pathway of compound 1 is through the cyanide bridge connecting apical and equatorial positions of adjacent copper (II) ions.  相似文献   

11.
Two new complexes, {[MnAu2(CN)4(NITpPy)2(H2O)2]}n (1) and {[Co(N(CN)2)2(NITpPy)2(H2O)2]}n (2), have been synthesized and characterized. The single-crystal X-ray analysis for the complexes 1 and 2 demonstrates that each M(II) (M = Mn or Co) ion assumes a distorted octahedral MN4O2 coordination polyhedron. Four nitrogen atoms come from the cyanide groups and the pyridyl rings in a common plane, and two oxygen atoms come from the H2O molecules in trans-positions. The structures of complexes 1 and 2 illustrate that aurophilicity and/or hydrogen bonding interactions play important roles in increasing dimensionality. Magnetic investigations on complexes 1 and 2 show the presence of weak antiferromagnetic interactions.  相似文献   

12.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

13.
Complexes of type [M(tftb)2Ln] [M=Sr; n=1, L=tetraglyme (4), 2,3-benzo-10-aza-1,4,7,13-tetraoxacyclopentadeca-2-ene (batcp) (5), n=2, L=2,2-bipyridine-N,N (bipy) (6); M=Ba; n=1, L=tetraglyme (7), 2,3-benzo-10-aza-1,4,7,13-tetraoxacyclopentadeca-2-ene (batcp) (8); n=2, L=2,2-bipyridine-N,N (bipy) (9)] were prepared by in situ reactions of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htftb) (1) with M(OH)2 [M=Sr (2a); Ba (2b)] in the presence of the ancillary ligands L (3a: L=tetraglyme; 3b: L=2,3-benzo-10-aza-1,4,7,13-tetraoxacyclopentadeca-2-ene (batcp); 3c: L=2,2-bipyridine-N,N (bipy)) in aqueous ethanol. The compounds were obtained in high yields and characterized by elemental analysis, 1H NMR, mass spectrometry and IR analysis. Molecular structure of the [Sr(tftb)2(batcp)] (5) has been determined by X-ray single crystal analysis.  相似文献   

14.
The reaction of [PdCl2(CH3CN)2] with N-alkylaminopyrazole (NN′) ligands, 1-[2-(ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[2-(ipropylamino)ethyl]-3,5-dimethylpyrazole (deai), and 1-[2-(tbutylamino)ethyl]-3,5-dimethylpyrazole (deat), affords a series of square planar Pd(II) complexes [PdCl2(NN′)] (NN′ = deae (1), deai (2) and deat (3)). The solid-state structures of complexes 1 and 3 were determined by single crystal X-ray diffraction studies. The NN′ ligands are coordinated through the Npz and Namine atoms to the metal atom, which completes its coordination with two chlorine atoms in a cis disposition. These palladium(II) compounds were characterised by elemental analyses, conductivity measurements, IR, 1H and 13C{1H} NMR spectroscopies. The NMR studies of the complexes prove the rigid conformation of the ligands when they are complexed.  相似文献   

15.
Reaction of the N-alkylaminopyrazole (NNN) ligands bis[(3,5-dimethyl-1-pyrazolyl)methyl]ethylamine (bdmae) and bis[(3,5-dimethyl-1-pyrazolyl)methyl]isopropylamine (bdmai) with [PdCl2(CH3CN)2] in a 1:1 M/L ratio in CH2Cl2 produces cis-[PdCl2(NNN)] (NNN = bdmae (1), bdmai (2)). The solid state structure of complex 1 was determined by X-ray diffraction studies. The bdmae ligand is coordinated through the two Npz atoms to the metal atom, which completes its coordination with two chlorine atoms in a cis disposition.Treatment of the corresponding ligand with [PdCl2(CH3CN)2] in 1:1 M/L ratio in the presence of AgBF4 and metathesis with NaBPh4 in CH2Cl2/CH3OH (3:1) gave [PdCl(bdmae)](BPh4) (3), and in the presence of NaBPh4 in CH2Cl2/CH3CN (3:1) gave [PdCl(bdmai)](BPh4) (4). Complexes 1 and 2 were again obtained when complexes 3 and 4 were heated under reflux in a solution of Et4NCl in acetonitrile. These Pd(II) compounds were characterised by elemental analyses, conductivity measurements, IR, 1H and 13C{1H} NMR, HMQC and NOESY spectroscopies. The NMR studies of the complexes prove the rigid conformation of the ligands when they are complexed.  相似文献   

16.
The crystal and molecular structures of Th(oda)2(H2O)4·6H2O (1) and Na2[Th(oda)3]·2NaNO3 (2) (oda = oxydiacetate) have been determined from three-dimensional X-ray diffraction data and refined by least squares to R = 0.049 and Rw = 0.049 for 2265 independent reflections for (1) and to R = 0.024 and Rw = 0.023 for 2196 independent reflections for (2).Crystal parameters are as follows: (1), tetragonal, space group P41212, a = 10.335(2), c = 20.709(5) Å and Z = 4; (2), monoclinic, space group C2/c, a = 17.096(5), b = 9.451(2), c = 16.245(4) Å, β = 107.8(1) and Z = 4.In both compounds the thorium atom lies on a crystallographic two-fold axis. The co-ordination number for thorium in (1) is 10 (bicapped square antiprism geometry), the compound is monomeric, the two oda ligands are tridentate to the metal, and four water molecules complete the coordination sphere; in thorium (2) the coordination number is 9 (tricapped trigonal prism geometry) with three oda ligands tridentate to the metal, the [Th(oda)3]2? and NO3? anions are held together through the sodium ions which are coordinated both to the oda carboxylic oxygens and to the nitrate oxygens.The ThO coordination distances are: in (1) 2.411(8), 2.414(9) for the carboxylic oxygens, 2.479(10) and 2.486(8) for water molecules and 2.697(9) for the etheric oxygen and in (2) 2.384(3), 2.402(4) and 2.402(4) for the carboxylic oxygens, 2.559(5) and 2.562(4) Å for the etheric oxygens.  相似文献   

17.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

18.
The reaction of cis- or trans-[Ru(CNtBu)4(CN)2] with Fe(III) compounds leads to the formation of molecular squares of the general formula cyc-[Ru(CN-tBu)4(CN)2FeX3]2 or one-dimensional coordination polymers [Ru(CN-tBu)4(CN)2FeX3]n, respectively. Temperature dependent susceptibility measurements indicate that the magnetic properties of the coordination compounds are determined by their molecular structure. Of particular importance is the local symmetry at the iron(III) center which is related to the coordinating anion. The magnetic properties are best described in terms of weak antiferromagnetic interactions between the iron centers for the molecular squares as well as the coordination polymer with X = NO3 and as weak ferromagnetic interactions in case of the linear coordination polymer with X = Cl. For all compounds zero field splitting at low temperatures has to be taken into account.  相似文献   

19.
A mononuclear compound [Cd(dpaH)2(dca)2] (1) and a tetranuclear based 2D coordination polymer [Hg4(dpa)4(dca)4]n (2) [dpaH = 2,2′-dipyridylamine, dpa = anion of dpaH, dca = dicyanamide] have been synthesized and characterized. X-ray structural analyses reveal that cadmium(II) center in 1 has a distorted octahedral geometry with a CdN6 chromophore ligated through two bidentate neutral dpaH units along with two nitrile N atoms of two terminally bound dca units in mutual cis orientation. Each of the four independent mercury(II) centers in 2 adopts a distorted trigonal bipyramidal environment coordinated by two pyridine N atoms of two different anionic dpa ligands, two nitrile N atoms of two μ1,5 bridged dca units and the fifth position is occupied by the amide N of one dpa. Cooperative intermolecular N-H···N and C-H···N hydrogen bondings promote dimensionality in 1. The compounds display intraligand 1(π-π) fluorescence in DMF solutions at room temperature.  相似文献   

20.
Two new nickel(II) complexes with the composition [Ni(L+H)(CH3CN)2](ClO4)3 (1) and [Ni(L)(tp)]·6H2O (2), (L = 3,10-bis{3-(1-imidazolyl)propyl}-1,3,5,8,10,12-hexaazacyclotetradecane, tp = terephthalate) have been synthesized and structurally characterized by a combination of analytical, spectroscopic and X-ray diffraction methods. The structure of 1 consists of monomeric cations of the formula [Ni(L+H)(CH3CN)2]3+ and perchlorate ions. The nickel(II) ion is six-coordinate with bonds to the four nitrogen atoms of the macrocycle and two nitrogen atoms of the axial acetonitrile ligands. One of the protonated imidazole pendants of the macrocycle is hydrogen bonded to the imidazole group of the neighboring nickel(II) macrocycle, forming an undulated 1D supramolecule. Then, the two 1D supramolecular chains are further interconnected by C-H···π interactions between the methyl group of the acetonitrile ligand and one of the imidazole groups to form a 2D double stranded supramolecular polymer. In the structure of 2, the 1D coordination polymer is formed with nickel(II) macrocycles and bridging terephthalate ions, where each 1D chain is interconnected with π-π interactions of pendant imidazole moieties of the macrocycles, resulting in the formation of a 2D supramolecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号