首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and structural characterization of the copper salts [Cu2(2-Boc-benzoate)4(dme)2] (1), [Cu(2-Boc-benzoate)2(tmeda)] (2), [Cu2(2-Boc-benzoate)2(dppm)] (3), [Cu(2-Boc-nicotinate)(PPh3)2] (4), [Cu2{2-Boc-5,6-anhydride-naphthylcarboxylate}2(dppm)2] (5) [dme = 1,2-dimethoxyethane, dppm = bis(diphenylphosphino)methane, tmeda = N,N′-tetramethylethylenediamine, Boc = tert-butoxycarbonyl] prove that cyclic organic anhydrides and dianhydrides readily insert into the Cu-O bond of [CuOtBu] forming carboxylate ligands with ester functionalities in the ligand periphery. [Sb(CO2Ph-o-CO2Me)2(OMe)(tmeda)] (6) was synthesised by insertion reaction of Sb(OMe)3 with phthalic anhydride.  相似文献   

2.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

3.
This work describes the reactivity of compounds [Pd(dmpz)2(Hdmpz)2] (A) (dmpz = 3,5-dimethylpyrazolate, Hdmpz = 3,5-dimethylpyrazol) and [Pd2(μ-dmpz)2(dmpz)2(Hdmpz)2] (B) towards several dicarboxylic acids and also towards perchloric acid. The compounds [Pd(Hdmpz)4](O2C-(CH2)n-CO2H)2 [n = 1 (1), 3 (2)] have been obtained by treatment of [Pd(dmpz)2(Hdmpz)2] (A) with two equivalents of malonic (HO2C-CH2-CO2H) and glutaric (HO2C-(CH2)3-CO2H) acids. The X-ray study on a crystal of [Pd(Hdmpz)4](O2C-(CH2)3-CO2H)2 (2) revealed that the glutarate anions link to the cationic complex [Pd(Hdmpz)4]2+ through the carboxylate group by charge-assisted N-H(+)?O(−) hydrogen bonds. Additionally, the carboxylate anions form uncommon dimeric rings on both sides of the metal complex via a pair of O-H?O hydrogen bonds, yielding a hydrogen bonded polymeric chain with alternating inorganic [Pd(Hdmpz)4]2+ and organic fragments. The dinuclear complexes [Pd2(μ-dmpz)2(O2C-(CH2)n-CO2)(Hdmpz)2] [n = 0 (5), 1 (6)] were obtained from equimolar amounts of [Pd2(μ-dmpz)2(dmpz)2(Hdmpz)2] (B) and the corresponding dicarboxylic acid, HO2C-(CH2)n-CO2H (n = 0, 1). However, the synthesis of 5 and 6 requires two steps, the protonation of both terminal dmpz groups in B with HClO4 to give [Pd2(μ-dmpz)2(Hdmpz)4](ClO4)2 (4) and the subsequent treatment of this cationic palladium complex with salts of the corresponding dicarboxylic acids. The X-ray structures of compounds 5 and 6 are reported. Both in 5 and 6, the Pd2N4 ring shows a typical boat-like conformation and the metal atoms are separated in about 3.3 Å. Both 5 and 6 are asymmetric and contain two Hdmpz groups - H-bond donors - at one end, and two CO groups from the dicarboxylate anion - H-bond acceptors - at the other, in such a way that the donor end of one molecule links with the acceptor end of its neighbour forming a hydrogen-bonded polymeric chain. The synthesis and X-ray study of compounds [Pd(Hdmpz)4](ClO4)2 (3) and [Pd2(μ-dmpz)2(Hdmpz)4](ClO4)2 (4), obtained by reaction of [Pd(dmpz)2(Hdmpz)2] (A) and [Pd2(μ-dmpz)2(dmpz)2(Hdmpz)2] (B) with two equivalents of perchloric acid, are also reported.  相似文献   

4.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

5.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

6.
Two pyrazine-connected 1D copper(I) dppm polymers, {[Cu3(dppm)3Br2][Cu2(dppm)(pyz)Br2] Br · (CH3OH)2}n (1) and {[Cu2(dppm)2(NO3)2(pyz)](pyz)}n (2) (dppm = bis(diphenylphosphino)methane, pyz = pyrazine) have been synthesized and characterized by X-ray crystallography, luminescence, IR, 1H, and 31P NMR. Structure analysis shows that complex 1 is a neutral 1D polymer in sine-curve-like form, while complex 2 is in linear form. And photoluminescent study of them shows that they exhibit fluorescent emission bands at ca. 434 nm and 431 nm, respectively.  相似文献   

7.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

8.
Dinuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) or bis(diphenylphosphino)methane (dppm) and 2,2′-bipyridine or 2-[N-(2-pyridyl)methyl]amino-5,7-dimethyl-1,8-naphthyridine (L), [Cu2(bpy)2(dppm)2](BF4)2 (1), [Cu2(bpy)2(dcpm)](BF4)2 (2), [Cu2(L)(dppm)](BF4)2 (3) and [Cu2(L)(dcpm)](BF4)2 (4) were prepared, and their structures were determined by X-ray crystal analysis. Two-, three-, and four-coordinate copper(I) centers are found in these complexes. Compounds 3 and 4 show close CuI?CuI separations of 2.664(3) and 2.674(1) Å, respectively, whereas an intramolecular copper-copper distance of 3.038 Å is found in 2 having only dcpm as an additional bridge. Powdered samples of 1, 3, and 4 display intense and long-lived phosphorescence with λmax at 533, 575, and 585 nm at room temperature, respectively. In the solid state, 2 exhibits only a weak emission at 555 nm. The time-resolved absorption and emission spectra of these complexes were investigated. The difference in the emission properties among complexes 1-4 suggests that both CuI?CuI distances and coordination environment of the copper(I) centers affect the excited-state properties.  相似文献   

9.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

10.
Treatment of [Os3(μ-H)2(CO)10] with the chiral diphosphines BINAP, tolBINAP [(R)-2,2′-bis(di-4-tolylphosphino)-1,1′-binaphthyl], DIOP [(4R,5R)-(−)-O-isopropenylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane] affords [Os3(μ-H)2(CO)8(μ-L)] (L = BINAP (1), tolBINAP (2), DIOP (4)) in high yield. The X-ray structures for 1, 2 and 4 are reported, and structural and spectroscopic comparisons are made between these clusters and [Os3(μ-H)2(CO)8(μ-L)] (L = dppm (5), dppe (6), dppp (7)) which were synthesised similarly. Compounds 5 to 7 were previously synthesised by hydrogenation of 1,2-[Os3(CO)10(μ-L)] but the route from [Os3(μ-H)2(CO)10] is preferable. The H-bridged Os?Os distances are similar in 1, 2 and 4 indicating that these species are formally unsaturated 46-electron clusters. The P?P distances vary from 4.24 to 4.30 Å in 1 and 2, respectively, to 4.53 Å in 4 and there are related changes in the angles associated with the ligand set around the H-bridged osmium atoms. Introduction of the diphosphine ligands completely suppresses the ability to add CO, to insert acetylene to form a μ-η12-vinyl compound, and to exchange hydride ligands with styrene-d8, which are reactions characteristic of [Os3(μ-H)2(CO)10]. Clusters 2 and 5-7 were also used to examine the potential of natural abundance 187Os NMR spectroscopy through techniques based on inverse detection by HMQC, HSQC and HMBC spectroscopy.  相似文献   

11.
The aromatic thioether (2,6-bis((2-(dimethylamino)ethylamino)methyl)phenyl)(tert-butyl)sulfane (6) reacts with [Pd(NCCH3)2Cl2] under S-C bond cleavage to give the dinuclear palladium(II) complex [L3Pd2(μ-Cl)]2+ (7), where (L3) = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-thiophenolate. Complex 7 reacts readily with sodium acetate and sodium acetamide by the displacement of the bridging chloride group forming [L3Pd2(μ-OAc)]2+ (8) and [L3Pd2(μ-ONHCCH3)]2+ (9), respectively. Complex 8 can also be prepared by the reaction of 6 with [Pd(OAc)2]. All complexes were isolated as perchlorate salts and fully characterized by ESI-MS, IR, 1H, and 13C NMR spectroscopy. The structures of 7[ClO4] and 9[ClO4]2 have been determined by X-ray crystallography. The latter structure reveals a μ1,3-bridging acetamidate unit showing that (L3) can alter its conformation sufficiently to accommodate a multi-atom bridging species between the two Pd atoms.  相似文献   

12.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

13.
New trinuclear iron(III) furoates with the general formula [Fe3O(α-fur)6(R-OH)3]X, where α-fur C4H3OCOO, R = CH3 (1), C2H5 (2), n-C3H7 (3), n-C4H9 (4), X = NO3 (1-4); [Fe3O(α-Fur)6(DMF)(CH3OH)2]NO3 (5); [Fe3O(α-Fur)6(H2O)(CH3OH)2]Cl (6); [Fe2MO(α-Fur)6(L)(H2O)2], where L = THF (7-9), DMF (10-12), M = Mn2+ (7, 10), Co2+ (8, 11), Ni2+ (9, 12) and [Fe2MO(α-Fur)6(3Cl-Py)3], where M = Mn2+ (13), Co2+ (14), Ni2+ (15); have been prepared and investigated by Mössbauer and IR spectroscopy. The X-ray crystal structure for the 1·2CH3OH complex indicates that it crystallizes in the monoclinic crystal system (P21/n) and has a structure typical of μ3-O-bridged trinuclear iron(III) compounds. Coordination compounds 1, 4, 7, 8 can be used as regulators of the biochemical composition of cyanobacterium Spirulina platensis biomass. The supplementation of these compounds, in concentrations exceeding 5-10 mg/l, increases the content of iron, amino acids, peptides and carbohydrates in Spirulina.  相似文献   

14.
Thiolato-bridged tri- and dinuclear platinum complexes of the types [Pt3(μ-SR)4(dppm)2]2+ (1) and [Pt2(μ-ER)2(dppm)2]2+ (2) (E=S or Se; R=alkyl or aryl; dppm=bis(diphenylphosphino)methane) have been prepared using the mononuclear precursors [Pt(ER)2(dppm)]. The complexes have been characterized by NMR (1H, 13C, 31P, 195Pt), FT-IR and FAB mass spectral data. The structure of [Pt3(μ-SC6H4CH3-4)4(dppm)2][CF3SO3]2 · 6CH2Cl2 (1d), has been established through X-ray crystallography, revealing a zig-zag arrangement of the three coordination spheres around the platinum atoms.  相似文献   

15.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

16.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

17.
The ruthenium-iminoquinone complexes, [Ru(tpm)(Cl)(Q)]+ [tpm = tris(1-pyrazolyl)methane, Q = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, where aryl = C6H5, [1]+; m-(OCH3)2C6H3, [2]+; m-(Cl)2C6H3, [3]+] have been synthesized. The sensitive bond distances of “Q” in [1](ClO4) and [2](ClO4), C-O: 1.294(8), 1.281(2) Å; C-N: 1.352(8), 1.335(2) Å; and C-C(meta): 1.366(10)/1.367(9) Å, 1.364(2)/1.353(2) Å, respectively, and other analytical as well as theoretical (DFT) events suggest the valence configuration of [RuIII(tpm)(Cl)(QSq)]+ for [1]+-[3]+. The paramagnetic [1]+-[3]+ show sharp 1H NMR spectra with strikingly small J of 1.8-3.0 Hz. The DFT calculations on [1]+ predict that the triplet (S = 1) state exists above (1004 cm−1) the singlet (S = 0) ground state. [1]+ exhibits μ = 2.2 BM at 300 K which diminishes to 0.3 BM near 2 K due to the steady decrease in the ratio of triplet to singlet population with the lowering of temperature. [1]+-[3]+ exhibit one oxidation and two successive reductions each in CH3CN. Experimental and DFT analyses collectively establish the valence configurations at the non-innocent {Ru-Q} interface along the redox chain as [(tpm)(Cl)RuIII(QQo)]2+ ([1]2+-[3]2+) → [(tpm)(Cl)RuIII(QSq)]+ ([1]+-[3]+) → [(tpm)(Cl)RuII(QSq)] ↔ [(tpm)(Cl)RuIII(QCat)] (1-3) → [(tpm)(Cl)RuII(QCat)] ([1]-[3]). The spectral features of [1]n-[3]n (n = +2, +1, 0) have been addressed based on the TD-DFT calculations on [1]n.  相似文献   

18.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

19.
Five structurally diverse complexes, [Cd2(pyip)2(suc)2]n·1.5nH2O (1), [Zn(pyip)(glu)]n (2), [Cd(pyip)(glu)]n (3), [Zn(pyip)2(adip)2]n·2.5nH2O (4), [Cd3(pyip)2(adip)3]n (5) (pyip = 2-(pyridin-3-yl)-1H-imidazo[4,5-f][1,10]phenan-throline, H2suc = succinic acid, H2glu = glutaric acid, H2adip = adipic acid), have been hydrothermally synthesized. Complexes 1 and 4 are ribbon-like chains, in which pyip ligands attach to the both sides of the chain in pairs. Complex 2 is a one dimensional (1D) wave-like chain, while the pyip ligands attach to only one side of the chain. Complexes 3 and 5 are both two dimensional (2D) networks, in which the dicarboxylate ligands connect the dinuclear or trinuclear CdII units into layers with (4, 4) topological network. The structural differences among these complexes show that the organic acids have important influences on the final structures.  相似文献   

20.
《Inorganica chimica acta》2004,357(7):1997-2006
Five new lanthanide complexes displaying crotonato bridges have been prepared: [Gd2(crot)6(H2O)4] · 4(bpa) (1); [Ho2(crot)7]n · (Hbpa) (2); [Gd2(crot)6(bipy)2] (3); [Ho2(crot)6(bipy)2] (4) and [Nd2(crot)6(H2O)3]n (5), where bipy=2,2-bipyridine; bpa=di(2-pyridyl)amine; crot=crotonato. The compounds were characterized by magnetic susceptibility measurements and their crystal structures were determined by single crystal X-ray diffraction. These studies showed complexes 1, 3 and 4 to be dimers while structures 2 and 5 are polymeric in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号