首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new organic-inorganic hybrid compounds [Zn(phen)(SO4)(H2O)2]n (1) and [Cu(phen)(H2O)2] · SO4 (2) have been prepared by conventional aqueous solution synthesis and characterized by single-crystal X-ray diffraction, IR spectroscopy, thermal gravimetric analysis (TGA) and fluorescent spectroscopy. In compound 1, the sulfate group adopts bidentate mode to coordinate with two Zn(II) ions to form one-dimensional polymer. The one-dimensional polymers are further linked together via the intermolecular hydrogen-bonding and π-π stacking interactions to form a 3D supramolecular framework. Compound 2 is build up of discrete [Cu(phen)(H2O]2+ cations and SO42− anions to form a three-dimensional framework via hydrogen-bonding and π-π stacking interactions. Furthermore, the luminescent properties of both 1 and 2 were studied. The complexes 1 and 2 excited at 280 nm wavelength produced characteristic luminescence features, arising maybe due to the π-π transitions.  相似文献   

2.
One novel layered oxalatophosphate structure K2Fe(C2O4)(HPO4)(OH2) · H2O (1) has been synthesized by hydrothermal method. X-ray crystallography reveals that the complex 1 possesses a 2D layered structure constructed from octahedral FeO6, tetrahedral moieties and multidentate oxalate ligands with the K+ cations among the layers. It is noteworthy that the oxalate anion as a tetradentate ligand bonds to three iron atoms in bidentate-chelating mode on one side and in monodentate-bridging mode on the other, thus forming a neutral iron oxalate sheet. This new structural feature can be considered as the third role of the oxalate ions in metal oxalatophosphate chemistry.  相似文献   

3.
The P,P′diphenylmethylenediphosphinic acid (H2pcp) reacts with Co(ClO4)2 · 6H2O and 4,4′-bipyridine to give a mixture of two polymeric isomers of formula [Co(pcp)(bipy)0.5(H2O)2], {red (1) and pink (2)} and the new violet hybrid [Co(Hpcp)2] (3). The pure red and violet species have been obtained by the reaction of H2pcp with Co(CH3COO)2 · 4H2O and bipy or with Co(ClO4)2 · 6H2O, respectively. The analogous reaction of Ni(CH3COO)2 · 4H2O or Ni(ClO4)2 · 6H2O with H2pcp and bipy affords only the [Ni(pcp)(bipy)0.5(H2O)2] species (4). The two cobalt isomers present different structural arrangements. Whereas the red isomer (1) shows an undulated 2D layered structure, the pink one (2) forms an infinite monodimensional strand. Both the architectures extend to higher dimensions through hydrogen bonding interactions. The nickel derivative is isomorphous with the red cobalt isomer. The violet [Co(Hpcp)2] (3), which is isomorphous with the complexes of the reported series [M(Hpcp)2], M = Ca(II), Mg(II), presents a monodimensional polymeric structure. Compounds 1 and 4 show a very similar thermal behaviour, the two water molecules being lost in the temperature range 25-150 and 160-320 °C, respectively. Temperature dependent X-ray powder diffractometry (TDXD) has been performed on compound 1 in order to follow the structural transformations that occur during the heating process.  相似文献   

4.
The combination of anhydrous SnCl4 with 18-crown-6 in aqueous conditions results in formation of the non-hydrolysed product [cis-SnCl4(H2O)2] · 18-crown-6 · 2H2O. The X-ray crystal structure shows extensive intermolecular hydrogen bonding involving the cis-octahedral SnCl4(H2O)2 units, the uncoordinated water molecules and the crown ether. Similarly, [2,2,2]cryptand reacts with an aqueous solution formed by adding anhydrous GaCl3 to slightly acidic water, affording [[2,2,2]cryptand + 2H+][GaCl4]2.  相似文献   

5.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

6.
A new tri-cyanometalate building block for heterometallic complexes, [PPh4]2[FeII(Tpms)(CN)3] (2) (PPh4 = tetraphenylphosphonium; Tpms = tris(pyrazolyl) methanesulfonate), has been prepared. Using it as a building block, a one-dimensional chain compound, {[FeII(Tpms)(CN)3][MnII(H2O)2( DMF)2]} · DMF (3), has been synthesized and structurally characterized. The magnetic properties of 3 correspond to a ferromagnetic chain with weak long-range superexchanged magnetic interaction between the high-spin manganese(II) ions.  相似文献   

7.
A chain coordination polymer with the chemical formula {[Cu4L2(H2O)] · H2O}n, has been synthesized by the assembly reaction of K2CuL · 1.5H2O and Cu(OAC)2 · H2O with a 1:1 mole ratio in methanol, where H4L = 2-hydroxy-3-[(E)-({2-[(2-hydroxybenzoyl)imino]ethyl}imino)methyl] benzoic acid, OAC = CH3COO. The crystal structure was determined by single-crystal X-ray diffraction analysis, the compound has chain molecular structure formed by dissymmetrical tetranuclear units. The magnetic measurements showed that Cu-Cu of the complex exhibit antiferromagnetic interactions, and satisfactory fittings to the observed magnetic susceptibility data were obtained by assuming a binuclear system, and further using molecular field approximation to deal with magnetic exchange interactions between binuclear systems.  相似文献   

8.
New heterodinuclear ZnII/NiII (1) and homodinuclear NiII/NiII (2) water-soluble and air stable compounds of general formula [M(H2O)6][M′(dipic)2] · mH2O have been easily prepared by self-assembly of the corresponding metal(II) nitrates with dipicolinic acid (H2dipic) in water solution at room temperature.  The compounds have been characterized by IR, UV/Vis and atomic absorption spectroscopies, elemental and X-ray single crystal diffraction (for 1 · 4H2O and 2 · 5H2O) analyses.  3D infinite polymeric networks are formed via extensive hydrogen bonding interactions involving all coordinated and crystallization water molecules, and all dipicolinate oxygens, thus contributing to additional stabilization of dimeric units, metal-organic chains and 2D layers.  In 1 · 4H2O, the latter represent a rectangular-grid 2D framework with multiple channels if viewed along the c crystallographic axis, while in 2 · 5H2O intercalated crystallization water molecules are associated to form acyclic nonplanar hexameric water clusters and water dimers which occupy voids in the host metal-organic matrix, with a structure stabilizing effect via host-guest interactions.  The hexameric cluster extends to the larger (H2O)10 one with an unusual geometry (acyclic helical octamer with two pendent water molecules) by taking into account the hydrogen bonds to water ligands in [Ni(H2O)6]2+.  The obtained Zn/Ni compound 1 relates to the recently reported family of heterodimetallic complexes [M(H2O)5M′(dipic)2] · mH2O (M/M′ = Cu/Co, Cu/Ni, Cu/Zn, Zn/Co, Ni/Co, m = 2, 3), what now allows to establish the orders of the metal affinity towards the formation of chelates with dipicolinic acid (CoII > NiII > ZnII > CuII) or aqua species (CoII < NiII < ZnII < CuII).  相似文献   

9.
The reaction of the ZnCl2 with 6-methyl-2-pyridinecarboxylic acid, with a 1:2 metal-to-ligand molar ratio, affords optimum yields for the synthesis of [MeC5H4NCOOH][ZnCl3(H2O)] · [MeC5H4NCOO]H2O. The new complex has been characterised by elemental analyses, IR, 1H and 13C{1H} NMR, and single crystal X-ray diffraction methods. The X-ray structure analysis revealed that this structure consists of [ZnCl3(H2O)] anions, [MeC5H4NCOOH]+ cations, [MeC5H4NCOO] zwitterions, and solvent molecules (H2O) by means of hydrogen bonds.  相似文献   

10.
Hydrothermal reaction of molybdenum oxide and copper(II) source in the presence of 4,4′-bipyridine (4,4′-bpy) afforded three-dimensional covalent framework [CuII(4,4′-bpy)(MoO4)] (1), while reaction with 1,4-diazoniabicyclo[2,2,2]octane (DABCO) in place of 4,4′-bpy and addition of metal molybdenum resulted in one-dimensional chain-like compound . The copper in 1 is divalent and approximately shows trigonal bipyramidal geometry, while in 2 is monovalent and approximately shows T-shaped geometry. The structure of 1 has a three-dimensional pillar-layered framework constructed from bimetallic {CuMoO4} layers bridged by bifunctional ligand 4,4′-bpy. Interestingly, the {CuMoO4} layer in 1 consists of 16-membered {Cu4Mo4O8} rings and 8-membered {Cu2Mo2O4} rings, different from other reported {CuMoO4} layers. The structure of 2 consists a one-dimensional chain that is attached by peripheral {Cu(HDABCO)}2+ units. The chain is constructed from octamolybdates through common corners.  相似文献   

11.
Two new tetrahedral tungsten cyanide cluster compounds, [Cu(dien)]3[W4Te4(CN)12] · 9H2O (1) (dien=diethylenetriamine) and [Ni(en)(NH3)]3[W4Se4(CN)12] · 7.5H2O (2) (en=ethylenediamine), were synthesized by treating aqueous solutions of the saltlike cluster compound K6[W4Te4(CN)12] · 5H2O/K6[W4Se4(CN)12] · 6H2O with copper(II)/nickel(II) chloride in aqueous ammonia containing dien/en. The cyano-bridged layered coordination polymeric compounds were characterized by single-crystal X-ray diffraction analysis: monoclinic, space group P21 for 1; trigonal, space group for 2. Structures of 1 and 2 consist of infinite neutral layers of cluster components {W4Te4(CN)12}/{W4Se4(CN)12} connected, one another by {Cu(dien)} or {Ni(en)(NH3)} fragments, respectively.  相似文献   

12.
The reaction of Ln(III) ions with the precursor [Cu(opba)]2− in DMSO has afforded a series of isostructural compounds of general chemical formula Ln2[Cu(opba)]3(DMSO)6(H2O) · (H2O), where Ln(III) stands for a lanthanide ion and opba stands for ortho-phenylenebis(oxamato). The crystal structure has been solved for the Gd(III) containing compound. It crystallizes in the orthorhombic system, space group Pbn21 (No. 33) with a = 9.4183(2) Å, b = 21.2326(4) Å, c = 37.9387(8) Å and Z = 4. The structure consists of ladder-like molecular motifs parallel to each other. To the best of our knowledge, this is the first Ln(III)Cu(II) coordination polymer family exhibiting the same crystal structure over the whole lanthanide series. The magnetic properties of the compounds have been investigated and the magnetic behavior of the Gd(III) containing compound was studied in more detail.  相似文献   

13.
The synthesis, thermal behavior, spectroscopic characterization and crystal and molecular structure of a Zn(II) complex containing the pseudo-oxocarbon Croconate Violet (CV2−) dianion, namely K2[Zn(CV)2(H2O)2] · 2H2O are reported. Thermal analysis has shown that the complex structure presents coordination and lattice water molecules. According to vibrational spectroscopy the Croconate Violet dianion is coordinated to Zn(II) center through the vicinal oxygen atoms in a chelating fashion with no involvement of CN moieties. The complex structure has been confirmed by single crystal X-ray diffraction analysis. The dianionic units [Zn(CV)2(H2O)2]2− adopt an slight distorted octahedral geometry in which the metallic center is surrounded by six oxygen atoms. These discrete dianionic units are connected through intermolecular hydrogen bonding giving rise to a supramolecular array extended along the crystallographic a axis.  相似文献   

14.
Reaction of Zn(AcO)2 · 2H2O with 6-methyl-2-pyridinecarboxylic acid (L) yielded a new compound [Zn(MeC5H3NCOO)2(H2O)] · H2O. This complex was characterised by elemental analyses, conductivity measurements, infrared, 1H and 13C{1H} NMR spectroscopies and single-crystal X-ray diffraction. The crystal structure consists of discrete molecules involving a pentacoordinated Zn atom with a geometry intermediate between a trigonal bipyramid and a square pyramid and with the two Npy atoms occupying the apical sites. Treatment of the complex [Zn(MeC5H3NCOO)2(H2O)] · H2O with 2,2-bipyridine (bpy) produced [Zn(MeC5H3NCOO)2(bpy)]. The metallic atom in this complex displays a distorted octahedral geometry and is coordinated to two ligands (L) via the pyridine nitrogen and the carbonyl oxygen atoms and to one 2,2-bypyridine (bpy).  相似文献   

15.
Pure cadmium oxalate trihydrate (COT) and barium added cadmium oxalate (BCO) single crystals were grown by controlled diffusion of Cd2+ and Ba2+ ions in silica gel at ambient temperature. A single test tube technique coupled with gel aging conferred maximum size crystals by controlling the nucleation rate. It was found that the pH and age of the gel greatly influenced the crystal quality, their size and transparency. Grown crystals CdC2O4 · 3H2O and Ba0.5Cd0.5(C2O4)2 · 5H2O were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. Effect of barium dopant on the growth and morphology of cadmium oxalate was studied. Pure cadmium oxalate crystallized in triclinic system and the barium-doped cadmium oxalate crystallized in hexagonal system with massive changes in their unit cell parameters. The infrared spectrum revealed the presence of oxalate ligands and water of hydration in both the pure and barium-doped crystals. Thermal analysis showed that the grown crystals were dehydrated thermally even from lower temperatures and the doped crystals were found more stable.  相似文献   

16.
The reactions of Ln(NO3)3 · xH2O, CoSO4 · 7H2O or ZnSO4 · 6H2O and 2-pyridylphosphonic acid under hydrothermal conditions result in heterometallic phosphonate compounds with formula [Ln2M3(C5H4NPO3)6] · 4H2O (Ln2M3; M = CoII or ZnII; Ln = LaIII, CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII). These compounds are isostructural and crystallize in a chiral cubic space group I213. Each structure contains the {LnO9} polyhedra and {MN2O4} octahedra which are connected by edge-sharing to form an inorganic open-framework structure with a 3-connected 10-gon (10, 3) topology. The nature of LnIII-CoII magnetic interactions in Ln2Co3 is investigated by a comparison with their LnIII-ZnII analogues. It is found that the LnIII-CoII interaction is weak antiferromagnetic for Ln = Ce and ferromagnetic for Ln = Sm, Gd, Tb and Dy. In the cases of Ln = Pr, Nd and Eu, no significant magnetic interaction is observed.  相似文献   

17.
A trinuclear copper(II) complex, [Cu3(2,5-pydc)2(Me5dien)2(BF4)2(H2O)2] · H2O 1, has been constructed from 2,5-pyridine-dicarboxylato bridges (2,5-pydc2−) and N,N,N′,N″,N″-pentamethyl-diethylenetriamine (Me5dien) acting as a blocking ligand. The copper ions, within the centrosymmetric trinuclear cations, are connected by two 2,5-pydc2− bridges, with an intramolecular Cu···Cu separation of 8.432 Å. The central copper ion exhibits an elongated octahedral geometry, with semicoordinated ions, while the terminal ones are pentacoordinated (distorted square-pyramidal geometry). The cryomagnetic investigation of 1 reveals an antiferromagnetic coupling of the copper(II) ions (J = −5.9 cm−1, H = −JSCu1SCu2 − JSCu2SCu1a).  相似文献   

18.
A novel organic-inorganic hybrid vanadium arsenate [H3V3O26(AsO4)4(phen)8(H2O)2] · 2H2O 1 (phen=phenanthroline) was synthesized by the hydrothermal reaction of V2O5, VOSO4, Na2HAsO4 · 7H2O, phen and water. Its structure was determined by elemental analyses, XPS spectra, EPR spectrum, TG analysis, IR spectrum and single-crystal X-ray diffraction.  相似文献   

19.
Three new thiodiacetato-Cu(II) chelates have been synthesized and studied by X-ray crystallography and by thermal, spectral and magnetic methods. [Cu(tda)]n (1) is a 3D-polymer with a pentadentate tda, which acts with a fac-O2 + S(apical)-tridentate chelating conformation and as a twofold anti, syn-μ-η11 carboxylate bridge. In its square pyramidal Cu(II) coordination (type 4 + 1) four O(carboxylate) donors define a close regular square base, but the Cu-S(apical) bond deviates 27.4° from the perpendicular to the mean basal plane. Each anti,syn-bridging carboxylate group exhibits two C-O (average 1.26(1) Å) and two Cu-O bonds (average 1.958(7) Å), which are very similar in length to each other. In contrast, the mixed-ligand complexes of [Cu(tda)(Him)2(H2O)] (compound 2, distorted octahedral, type 4 + 1 + 1) and [Cu(tda)(5Mphen)] · 2H2O (compound 3, distorted square pyramidal, type 4 + 1) have molecular structures and the tda ligand displays only a fac-O2 + S(apical)-tridentate conformation. The Cu-S(apical) bond lengths (2.570(1), 2.623(1) or 2.573(1) Å for 1, 2 or 3, respectively) are shorter than those previously reported for closely related Cu(II)-tda derivatives. The different tda ligand roles in their Cu(II) derivatives are rationalized on the basis of crystal packing forces driving in the absence or presence of auxiliary ligands (with two or three N-donor atoms).  相似文献   

20.
This report describes synthesis and characterization of bis-ligand Mn(II) complexes of bidentate chelators: maltol (3-hydroxy-2-methyl-4-pyrone), ethylmaltol (2-ethyl-3-hydroxy-4-pyrone), 1,2-dimethyl-3-hydroxy-4-pyridinone (DMHP) and dehydroacetic acid. All four Mn(II) complexes were characterized by elemental analysis, IR, UV/Vis, EPR, cyclic voltammetry, and X-ray crystallography in cases of Mn(dha)2(CH3OH)2 and [Mn(ema)2(H2O)]2 · 2H2O. The bidentate chelator plays a significant role in the solid state structure of its Mn(II) complex. For example, dha forms the monomeric complex Mn(dha)2(CH3OH)2 while ethylmaltol forms the dimeric complex [Mn(ema)2(H2O)]2. Because of smaller size, maltol ligands in Mn(ma)2 are able to bridge adjacent Mn(II) centers to give a polymeric structure in solid state. Despite of the difference in their solid state structures, both Mn(ema)2 and Mn(ma)2 exist in solution as monomeric Mn(II) species, Mn(ema)2(H2O)2 and Mn(ma)2(H2O)2. This assumption is supported by the similarity in their UV/Vis spectra, EPR data and electrochemical properties. Replacing maltol with DMHP results in a decrease (by ∼100 mV) in the redox potential for the Mn(II)/Mn(III) couple, suggesting that DMHP stabilizes Mn(III) better than maltol. Since Mn(DMHP)2(H2O)2 is readily oxidized to form the more stable Mn(III) complex Mn(DMHP)3, DMHP has the potential as a chelator for removal of excess Mn(II) from patients with chronic Mn toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号