首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of gem-diphenyltetrafluorocyclotriphosphazene with in situ generated lithiated phenylacetylene resulted in the formation of the first example of a gem-diphenyltrifluorophosphazene based alkyne (β-phenylethynyl)-gem-diphenyltrifluorocyclotriphosphazene (NPPh2)(NPF2)[NP(F)CCPh] 1. Reaction of this alkyne with η5-(MeOC(O)C5H4)Co(PPh3)2 resulted in the formation of a CpCo stabilized cyclobutadiene complex [η5-carbomethoxycyclopentadienyl][η4-1,3-bis(gem-diphenyltrifluorocyclotriphosphazenyl)-2,4-diphenylcyclobutadiene]cobalt 2, having two gem-diphenyltrifluorophosphazene moieties trans to each other on the cyclobutadiene ring. The reaction also yielded two structural isomers of the PPh3 stabilized cobaltacyclopentadiene compounds 3 and 4 having gem diphenyl trifluorophosphazene moieties present in the 2,4 and 2,5 positions of the metallacycle. The reaction in addition yielded a novel spirocyclic phosphazacyclopentadiene compound bound to a CpCo unit in the η4-mode 5. All the compounds were characterized by 1H, 13C, 31P and 19F NMR spectroscopy and compounds 2, 3 and 5 were also structurally characterized by X-ray crystallography.  相似文献   

2.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

3.
[Pt5(μ-CO)5(CO)L4] (L = PPh31, PPh2Bz 2, AsPh33, PEt34, PCy35) have been synthesized by reacting [Pt3(μ-CO)3(PR3)3] with H2O2 (1 and 2), by reduction of cis-[PtCl2(CO)(PEt3)] with Zn dust (4), and by the Zn reduction of [Pt3(μ-CO)3(PCy3)3] in the presence of [PtCl2(CH3CN)2] (5). Complex 5 has not been observed previously and has been characterized by X-ray crystallography. Oxidation of the phosphine ligands with H2O2 is a new way to synthesize 1 and 2. The first complete NMR characterization of these complexes has also been achieved, and showed that these pentanuclear cluster complexes exhibit similar stereochemistries in solution and in the solid state. The observed 1JPt-Pt values do not have any correlation with the corresponding bond lengths, again pointing out the irregular behaviour of such parameter in Pt complexes.  相似文献   

4.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

5.
A new mononuclear tetracyanometallic complex, (n-Bu4N)[(dbphen)Fe(CN)4] (1, dbphen = 5,6-dibromo-1,10-phenanthroline), has been prepared by reacting [(dbphen)FeII(py)2(SCN)2] and KCN in water and further oxidized with chlorine. With the use of 1 as building block, two trinuclear Fe2M complexes, [(dbphen)2Fe2(CN)8Cu(Me3tacn)]·3H2O (2), [(dbphen)2Fe2(CN)8Ni(dabhctd)]·2H2O (3) and a chain complex of squares [(dbphen)2Fe2(CN)8Co(MeOH)2]n (4), have been synthesized and structurally characterized. Magnetic studies show ferromagnetic coupling between FeIII and MII (M = Cu, 2; Ni, 3) ions bridged by cyanides in complexes 2 and 3, while complex 4 exhibits meta-magnetic behavior.  相似文献   

6.
Complex [PdCl(bdtp)](BF4), in presence of AgBF4 or NaBF4, reacts with pyridine (py), triphenylphosphine (PPh3), cyanide (CN), thiocyanate (SCN) or azide (N3) ligands, leading to the formation of the following complexes: [Pd(bdtp)(py)](BF4)2 [1](BF4)2, [Pd(bdtp)(PPh3)](BF4)2 [2](BF4)2, [Pd(CN)(bdtp)](BF4) [3](BF4), [Pd(SCN)(bdtp)](BF4) [4](BF4) and [Pd(N3)(bdtp)](BF4) [5](BF4). These complexes were characterised by elemental analyses, mass spectrometry, conductivity measurements, infrared and NMR spectroscopies. The crystal structure of [2](BF4)2 was determined by single-crystal X-ray diffraction methods. The metal atom is coordinated by two azine nitrogen atoms, and one sulfur atom of the thioether-pyrazole ligand and one triphenylphosphine in a distorted square-planar geometry.  相似文献   

7.
Condensation of tetraphenylporphyrin-2,3-dione with 1,10-phenanthroline-5,6-diamine provided porphyrinphenanthroline (2) as the desired ligand. Metallation of the porphyrinic site of 2 with CoCl2, NiCl2, ZnCl2 and CuCl2 afforded the corresponding metal complexes [Co(2)] (8a), [Ni(2)] (8b), [Zn(2)] (8c) and [Cu(2)] (8d), respectively. Subsequent reactions of these metalloporphyrins with [(COD)PdCl2] yielded the corresponding bimetallic complexes [Co/Pd (9a), Ni/Pd (9b), Zn/Pd (9c) and Cu/Pd (9d)] in high yields. The bimetallic complex 9e (Mg/Pd) was prepared directly by complexation of 2 with MgBr2 and [(COD)PdCl2]. All complexes were characterized by both spectroscopic and elemental analyses. In addition, crystal structure of 9c was determined to confirm its formulation. The use of these bimetallic complexes as pre-catalysts for Mizoroki-Heck coupling reaction has been examined.  相似文献   

8.
Three 1-D transition metal-nitronyl nitroxide radical complexes with dicyanoaurate(I) bridges, [M(NIT3py)2][Au(CN)2]2 [NIT3py = 2-(3′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, M = Mn, Co, Zn (1-3)], were synthesized and structurally characterized. Three compounds are all isostructural in monoclinic, C2/c space group with Z = 4. The [Au(CN)2] anions link [M(NIT3py)2] units via μ2-bridging mode, leading to a linear coordination chain. The M(II) ion adopts a distorted octahedral geometry with four N atoms from [Au(CN)2] groups and two pyridyl-N atoms from NIT3py ligands. The magnetic behavior shows that the couplings are both weak antiferromagnetic between Mn(II) and NIT3py and between Co(II) and NIT3py.  相似文献   

9.
The first employment of pyridine-2-amidoxime [(py)C(NH2)NOH] in zinc(II) chemistry is reported. The syntheses, crystal structures, and spectroscopic characterization are described for complexes [Zn(O2CR)2{(py)C(NH2)NOH}2] (R = Me; 1, Ph; 2), [Zn2(acac)2{(py)C(NH2)NO}2] (3), and [Zn(NO3){(py)C(NH2)NOH}2](NO3) (4). The reactions between Zn(O2CR)2·2H2O (R = Me, Ph) or Zn(NO3)2·5H2O and two equivalents of (py)C(NH2)NOH in MeOH led to mononuclear compounds 1, 2 and 4, respectively. All three complexes contain two neutral N,N′-chelating (η2) (py)C(NH2)NOH ligands, coordinated through the Npyridyl and Noxime atoms. In contrast, the use of Zn(acac)2·H2O in place of Zn(O2CR)2·2H2O gives the dinuclear compound 3, which instead contains the anionic, η111:μ bridging form of the organic ligand; the ZnII atoms are doubly bridged by the diatomic oximate groups of the (py)C(NH2)NO groups. Strong intra- and intermolecular hydrogen bonding interactions provide appreciable thermodynamic stability and interesting supramolecular chemistry for compounds 1-4. The photoluminescence properties of complexes 1-4 recorded in the solid state at room temperature are also presented.  相似文献   

10.
Reaction of [(PPh2C5H4)Cp3Fe4(CO)4] (1) with (CO)4W(CH3CN)2 at ambient temperature affords [(CO)4W(PPh2C5H4)Cp3Fe4(CO)4] (2) as the major product, together with a small amount of [(CO)5W(PPh2C5H4)Cp3Fe4(CO)4] (3). Compound 3 can be obtained in good yield by treating (CO)5W(CH3CN) with equal molar of 1, and reaction of 3 with Me3NO in acetonitrile solvent produces 2 exclusively. The crystal structures of 2 and 3 have been determined by an X-ray diffraction study. Compound 2 contains an interesting μ4, η2-CO ligand, where two electrons donated by the carbon atom are involved to bridge a Fe3 face and two electrons from oxygen are donated to the tungsten(0) atom.  相似文献   

11.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

12.
Two crystalline complexes of bis(η1-methylcyclopentadienyl)zinc, [Zn(C5H4Me)2(py)2] (1), where py is pyridine, and [Zn(C5H4Me)2(teeda)], 2, where teeda is N,N,N′,N′-tetraethylethylenediamine have been isolated. The crystal structures of 1 and 2 are the first crystal structures for Zn(C5H4Me)2 complexes reported in the literature; both structures display η1-coordination of the methylcyclopentadienyl ring to zinc, and both compounds display chirogenic α-carbon atoms. While 1 forms racemic crystals, 2 undergoes spontaneous resolution and crystals of 2 are thus enantiomerically pure. 1H NMR showed that Zn(C5H4Me)2 is stereochemically labile in solution with only one signal for the Cp-protons. This fact opens up the possibility for total spontaneous resolution and absolute asymmetric synthesis.  相似文献   

13.
Six new complexes, [Cu4I4(PPh2Cy)4]·2H2O (1), [CuI(PPhCy2)2] (2), [CuCl(PPhCy2)2] (3), and [CuBr(PPh3)3]·CH3CN (4), [Ag(PPhCy2)2(NO3)] (5), [Ag(PCy3)(NO3)]2 (6) [where Ph = phenyl, Cy = cyclohexyl], have been synthesized and structurally characterized by X-ray diffraction, IR absorption spectra and NMR spectroscopic studies (except complex 4). The X-ray diffraction analysis of complex (1), pseudo polymorph of complex [Cu4I4(PPh2Cy)4], reveals a stella quadrangula structure. The four corners of the cube are occupied by copper(I) atoms and four I atoms are present at the alternative corners of the cube, further more the copper(I) atoms are coordinated to a monodentate tertiary phosphine. Complexes (2) and (3) are isostructural with trigonal planar geometry around the copper(I) atom. The crystal structure of complex (4) is a pseudo polymorph of complex [CuBr(PPh3)3] and the geometrical environment around the copper(I) centre is distorted tetrahedral. In the AgI complexes (5) and (6), the central metal atoms have pseudo tetrahedral and trigonal planar geometry, respectively. Spectroscopic and microanalysis results are consistent with the single crystal X-ray diffraction studies.  相似文献   

14.
Acetonitrile is easily displaced from [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (R = 2,6-Me2C6H3 (Xyl) (1a); Me (1b)) upon stirring in THF at room temperature in the presence of [NBu4][SCN]. The resulting complexes trans-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (trans-2a); Me (trans-2b)) are completely isomerised to cis-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (cis-2a); Me (cis-2b)) when heated at reflux temperature. Similarly, the complexes cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(NCO)(Cp)2] (M = Fe, R = Me (4a); M = Ru, R = Xyl (4b); M = Ru, R = Me (4c)) and cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(N3)(Cp)2] (M = Fe, R = Xyl (5a); M = Fe, R = Me (5b); M = Ru, R = Xyl (5c)) can be obtained by heating at reflux temperature a THF solution of [M2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (M = Fe, R = Xyl (1a); M = Fe, Me (1b); M = Ru, R = Xyl (1c); M = Ru, R = Me (1d)) in the presence of NaNCO and NaN3, respectively. The reactions of 5 with MeO2CCCCO2Me, HCCCO2Me and (NC)(H)CC(H)(CN) afford the triazolato complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3C2(CO2Me)2}(Cp)2] (M = Fe, R = Xyl (6a); M = Fe, R = Me (6b); M = Ru, R = Xyl (6c)), [M2{μ-CN(Me)(R)}(μ- CO)(CO){N3C2(H)(CO2Me)}(Cp)2] (M = Fe, R = Me (7a); M = Ru, R = Xyl (7b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3C2(H)(CN)}(Cp)2] (8), respectively. The asymmetrically substituted triazolato complexes 7-8 are obtained as mixtures of N(1) and N(2) bonded isomers, whereas 6 exists only in the N(2) form. Methylation of 6-8 results in the formation of the triazole complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(CO2Me)2}(Cp)2][CF3SO3] (9), [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3(Me)C2(H)(CO2Me)}(Cp)2][CF3SO3] (M = Fe, R = Me (10a); M = Ru, R = Xyl (10b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(H)(CN)}(Cp)2][CF3SO3], 11. The crystal structures of trans-2b, 4b · CH2Cl2, 5a, 6b · 0.5CH2Cl2 and 8 · CH2Cl2 have been determined.  相似文献   

15.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

16.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

17.
Herein, we describe the synthesis of N,N′,S donor ligands 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-3-(methythio)propyl)-4-methoxy-3,5-dimethylpyridine (L1) and 2-(1-(3,5-diisopropyl-1H-pyrazol-1-yl)-2-(methythio)ethyl)-4-methoxy-3,5-dimethylpyridine (L2). Cu(I) complexes were prepared by reacting L1 or L2 with [Cu(CH3CN)4]BF4 or CuCl. The coordination behavior of the thioether arm of the ligands was found to determine the nuclearity of the resulting complexes, in which [Cu(L1)PPh3]BF4 (1) is polynuclear, [Cu(L2)PPh3]BF4 (2) is mononuclear, while [Cu(L1)]2(BF4)2 (3), [Cu(L2)CH3CN]2(BF4)2 (4), and [Cu(L1)Cl]2 (5) are dinuclear. In the dimeric complex [Cu(L2)Cl]2 (6), the sulfur atoms are not metal-bound. Rather, the two bridging chloride ions link the two copper centers. Compounds 4-6 are luminescent in the solid state, and exhibit emission bands centered at 490 nm (4), 544 nm (5), and 562 nm (6), respectively. Their excitation spectra display bands at 280 nm and 380 nm. According to DFT calculations, the HOMO is distributed partially over the metal centers and partially over the chloride anions (5 and 6) or the sulfur atoms (4) of the ligands, while the LUMO is a π∗ antibonding pyridine orbital. This suggests that the emission properties are derived from metal-to-ligand charge-transfer (MLCT), halide-to-ligand charge-transfer (XLCT), and ligand-to-ligand charge-transfer (LLCT) excited states.  相似文献   

18.
Dark blue [PPh4][CoIII(2L)] (2), where (2L)2− represents the closed-shell dianion of 4,6-di-tert-butyl-2-[(pentafluorophenyl)amino]benzenethiol, has been synthesized from the reaction of H2(2L) and CoCl2 (2:1) in acetonitrile with excess NEt3, brief exposure of the solution to air, and addition of [PPh4]Br. The oxidation of 2 with one equivalent of iodine produces the neutral species [CoIII(2L)2I]0 (3), where (2L)1− represents the one-electron oxidized π radical anion of (2L)2−. Crystalline [CoIII(4L)] (4), where (4L)3− is the π radical monoanion of bis-2,2′-(1,2-diphenylethylenediimine)-benzenethiolate, was precipitated from a toluene reflux of [CoII(3L)2], where (3L)2− is the closed-shell monoanion of 2-(phenylmethylamino)benzenethiol. The reduction of 4 with CoCp2 under anaerobic conditions yielded dark violet crystals of [CoCp2][CoIII(4L)] (5). The reaction of Zn(CH3CO2)2 with 2-phenylbenzothiazoline in methanol resulted in the formation of [ZnII(3L)2]0 (6). The two monoanions 2, and 5, along with [N(n-Bu)4][Co(abt)2] (1) (abt2− = o-aminobenzenethiolate), and neutral 4 have all been shown by X-ray crystallography to be square planar. A tetrahedral geometry was adopted by 6. From temperature dependent (3-300 K) magnetic susceptibility measurements, it was established the monoanions have a triplet ground state characterized by a large zero field splitting. EPR measurements of 4, and electrochemically oxidized 1 and 2 reveal distinctly different spin Hamiltonian parameters that are interpreted with the aid of density function theoretical (DFT) calculations. It is shown that oxidation states describing a d6 Co(III) or d7 Co(II) cannot be unambiguously assigned for these neutral and monoanionic species.  相似文献   

19.
Bis-bidentate Schiff base ligand L and its two mononuclear complexes [CuL(CH3CN)2]ClO4 (1) and [CuL(PPh3)2]ClO4 (2) have been prepared and thoroughly characterized by elemental analyses, IR, UV-Vis, NMR spectroscopy and X-ray diffraction analysis. In both the complexes the metal ion auxiliaries adopt tetrahedral coordination environment. Their reactivity, electrochemical and photophysical behavior have been studied. Complex 1 shows reversible CuII/I couple with potential 0.74 V versus Ag/AgCl in CH2Cl2. At room temperature L is weakly fluorescent in CH2Cl2, however in Cu(I) complexes 1 and 2 the emission in quenched.  相似文献   

20.
Five novel heterometallic Ni/Zn coordination compounds [Ni(en)3][ZnCl4] (1), [Ni(en)(Hea)2][ZnCl4] (2), [Ni(dien)2][ZnCl4] (3), [Ni(en)3][ZnCl4] · 2DMSO (4) and [Ni(en)3][Zn(NCS)4] · CH3CN (5), where en = ethylenediamine (ethane-1,2-diamine), Hea = monoethanolamine (2-aminoethanol) and dien = diethylenetriamine (1,4,7-triazaheptane), have been synthesized by means of the open-air reaction of zinc oxide, nickel chloride (or nickel powder), NH4X (X = Cl, NCS) and ligand (en, dien, Hea) in non-aqueous solvents, such as DMSO, DMF, CH3OH and CH3CN. The choice of a counter-anion in the initial ammonium salt as well as selection of the ligand and solvent provides an effortless approach to the controlled assembly of two- or three-dimensional extended networks assisted by hydrogen bonding. Crystallographic investigations reveal that 1, 2 and 5 possess 3D, while 3 and 4 exhibit 2D H-bonded crystal structures. The structures of the compounds exhibit six-coordinated Ni(II) centers and four-coordinated Zn(II) centers in distorted octahedral and tetrahedral geometries, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号