首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of zinc to Mung Bean Nuclease was investigated by anodic stripping voltammetry and cyclic voltammetry. These methods rely on the direct monitoring of the oxidation current of zinc in the absence and presence of Mung Bean Nuclease. Titration curves of Zn(2+) with the enzyme were obtained in concentrations ranging from 1.08x10(-9) to 1.07x10(-8) M and 1.16x10(-8) to 1.04x10(-7) M. The acquired data were used to calculate the dissociation constant and the stoichiometry of the complex. The binding sites of zinc in the Mung Bean Nuclease molecule were investigated using cyclic voltammetry. Two types of binding sites for zinc were identified and were attributed to a mononuclear exposed zinc-binding site with catalytic function and to an inaccessible binuclear zinc-binding site with structural functions.  相似文献   

2.
We show here that human U2 small nuclear RNA genes contain a 'strong nuclease S1 cleavage site' (SNS1 site), a sequence that is very sensitive to digestion by nuclease S1. This site is located 0.50-0.65 kb downstream of the U2 RNA coding region. It comprises a 0.15-kb region in which (dC-dT)n:(dA-dG)n co-polymeric stretches represent greater than 90% of the sequence. Nuclease S1 is able to excise unit length repeats of the human U2 RNA genes both from cloned fragments and total human genomic DNA. The precise locations of the cleavage sites are dependent on the superhelicity of the substrate DNA. In negatively supercoiled substrates, cleavages are distributed over the entire 0.15-kb region, but in linearized substrates, they occur within a more limited region, mainly at the boundary of the SNS1 site closest to the human U2 RNA coding region. Nuclease S1 cleavage of negatively supercoiled substrates occurs at pHs as high as 7.0; in contrast, cleavage of linearized substrates requires a pH less than 5.0, indicating that supercoiling contributes to the sensitivity of this site. Mung bean nuclease gives results similar to that observed with nuclease S1.  相似文献   

3.
4.
Sheng X  Guo X  Lu XM  Lu GY  Shao Y  Liu F  Xu Q 《Bioconjugate chemistry》2008,19(2):490-498
A preorganized cleft dinuclear zinc(II) complex of 2,6-bis(1-methyl-1,4,7-triazacyclonon-1-yl)pyridine 1 as an artificial nuclease was prepared via an improved method. The interactions of 1, 2 [1,4,7-triazacyclononane (TACN)], and their zinc(II) complexes with calf thymus DNA were studied by spectroscopic techniques, including fluorescence and CD spectroscopy. The results indicate that the DNA binding affinities of these compounds are in the following order: Zn(II)2 -1 > Zn(II) -2 > 1 > 2. The binding constants of the Zn (II)2 -1 and Zn(II)-2 complexes are 3.57 x 10(6) and 1.43 x 10(5) M(-1), respectively. Agarose gel electrophoresis was used to assess the plasmid pUC 19 DNA cleavage activities in the presence of the dinuclear Zn (II)2 -1 complex, which exhibits powerful DNA cleavage efficiency. Kinetic data for DNA cleavage promoted by the Zn(II)2 -1 complex under physiological conditions give the observed rate constant ( k obs) of 0.136 h(-1), which shows an 10(7)-fold rate acceleration over uncatalyzed supercoiled DNA. The comparison of the dinuclear Zn(II)2 -1 complex with the mononuclear zinc(II) complex of 1,4,7-triazacyclononane indicates that the DNA cleavage acceleration promoted by the Zn(II)2 -1 complex is due to the efficient cooperative catalysis of the two proximate zinc(II) cation centers. A hydrolytic mechanism of the cleavage process was suggested, and a preliminary study of the antitumor activity was also conducted.  相似文献   

5.
6.
Several chimeric ribo/2'- O -methylribo oligonucleotides were synthesized and their hydrolytic cleavage studied in the presence of Mg2+, Zn2+, Pb2+and the 1,4,9-triaza-cyclododecane chelate of Zn2+(Zn2+[12]aneN3) to evaluate the importance of RNA secondary structure as a factor determining the reactivity of phosphodiester bonds. In all the cases studied, a phosphodiester bond within a 4-7 nt loop was hydrolytically more stable than a similar bond within a linear single strand, but markedly less stable than that in a double helix. With Zn2+and Zn2+[12]aneN3, the hydrolytic stability of a phosphodiester bond within a hairpin loop gradually decreased on increasing the distance from the stem. A similar but less systematic trend was observed with Pb2+. Zn2+- and Pb2+-promoted cleavage was observed to be considerably more sensitive to the secondary structure of the chain than that induced by Zn2+[12]aneN3. This difference in behaviour may be attributed to bidentate binding of uncomplexed aquo ions to two different phosphodiester bonds. Mg2+was observed to be catalytically virtually inactive compared with the other cleaving agents studied.  相似文献   

7.
The multi-stranded DNA complexes formed by the oligonucleotides d(T15G4T2G4), Tel, and d(T15G15), TG, were examined by nuclease digestion and Raman spectroscopy. Both Tel and TG can aggregate to form structures consisting of multiple, parallel-oriented DNA strands with two independent structural domains. Overall, the structures of the TG and Tel aggregates appear similar. According to the Raman data, the majority of bases are in C2'-endo/anti conformation. The interaction of guanines at the 3'-ends in both complexes stabilizes the complexes and protects them from degradation by exonuclease III. The 5'-extensions remain single-stranded and the thymines are accessible to single-strand-specific nuclease digestion. The extent of enzymatic cleavage at the junction at the 5' end of the 15 thymines implies a conformational change between this part of the molecule and the guanine-rich region. The differential enzymatic sensitivity of the complexes suggests there are variations in backbone conformations between TG and Tel aggregates. TG aggregates were more resistant to digestion by DNase I, Mung Bean nuclease, and S1 nuclease than Tel complexes. It is proposed that the lower DNase I sensitivity may be partly due to the more stable backbone exhibited by TG than Tel complexes. Structural uniformity along the guanine core of TG is suggested, as there is no indication of structural discontinuities or protected sites in the guanine-rich regions of TG aggregates. The lower extent of digestion by Mung Bean nuclease at the 3' end implies that these bases are inaccessible to the enzyme. This suggests that there is minimal fraying at the ends, which is consistent with the extreme thermal stability of the TG aggregates.  相似文献   

8.
Binding and cleavage of nucleic acids by the "hairpin" ribozyme   总被引:8,自引:0,他引:8  
B M Chowrira  J M Burke 《Biochemistry》1991,30(35):8518-8522
The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+.  相似文献   

9.
An extracellular nuclease from Basidiobolus haptosporus (designated as nuclease Bh1) was purified to homogeneity by ammonium sulfate precipitation, heat treatment, negative adsorption on DEAE-cellulose, and chromatography on phenyl-Sepharose followed by FPLC on phenyl-Superose. The overall yield was 26%. The Mr of the purified enzyme, determined by gel filtration, was 41 000 whereas by SDS/PAGE (after deglycosylation) it was 30 000. It is a glycoprotein with a pI of 6.8. The optimum pH and temperature for DNA hydrolysis were 8. 5 and 60 degrees C, respectively. Nuclease Bh1 is a metalloprotein but has no obligate requirement for metal ions to be active, nor is its activity stimulated in the presence of metal ions. The enzyme was inhibited by Zn2+, Ag2+, Hg2+, Fe3+ and Al3+, inorganic phosphate, pyrophosphate, dithiothreitol, 2-mercaptoethanol, NaCl and KCl. It was stable to high concentrations of organic solvents and urea but susceptible to low concentrations of SDS and guanidine hydrochloride. Nuclease Bh1 is a multifunctional enzyme and its substrate specificity is in the order of ssDNA approximately 3'AMP > RNA > dsDNA. Studies on its mode of action showed that it cleaved supercoiled pUC 18 DNA and phage M13 DNA, endonucleolytically, generating single base nicks. The enzyme hydrolyzed DNA with preferential liberation of 5'dGMP, suggesting it to be a guanylic acid preferential endoexonuclease. 5'dGMP, the end product of hydrolysis, was a competitive inhibitor of the enzyme. The absence of 5'dCMP as a hydrolytic product, coupled with the resistance of (dC)10 and deoxyribodinucleoside monophosphates having cytosine either at the 3' or the 5' end, indicates that C-linkages are resistant to cleavage by nuclease Bh1.  相似文献   

10.
A Volbeda  A Lahm  F Sakiyama    D Suck 《The EMBO journal》1991,10(7):1607-1618
P1 nuclease from Penicillium citrinum is a zinc dependent glyco-enzyme consisting of 270 amino acid residues which cleaves single-stranded RNA and DNA into 5'-mononucleotides. The X-ray structure of a tetragonal crystal form of the enzyme with two molecules per asymmetric unit has been solved at 3.3 and refined at 2.8 A resolution to a crystallographic R-factor of 21.6%. The current model consists of 269 amino acid residues, three Zn ions and two N-acetyl glucosamines per subunit. The enzyme is folded very similarly to phospholipase C from Bacillus cereus, with 56% of the structure displaying an alpha-helical conformation. The three Zn ions are located at the bottom of a cleft and appear to be rather inaccessible for any phosphate group in double-stranded RNA or DNA substrates. A crystal soaking experiment with a dinucleotide gives clear evidence for two mononucleotide binding sites separated by approximately 20 A. One site shows binding of the phosphate group to one of the zinc ions. At both sites there is a hydrophobic binding pocket for the base, but no direct interaction between the protein and the deoxyribose. A cleavage mechanism is proposed involving nucleophilic attack by a Zn activated water molecule.  相似文献   

11.
The syntheses, characteristics of dinuclear macrocyclic polyamine zinc complexes and their interaction with plasmid DNA are reported. The two cyclen (1,4,7,10-tetraazacyclododecane) moieties are bridged by rigid and flexible linkages. The crystal structures of Zn2C27H43N8O15Cl4 [5c.(ClO4)3.2H2O] and Zn2C30H43N10O13Cl3 [5e.(ClO4)3.H2O] have been determined. The complexes crystallize in the monoclinic space group C2/c and P2(1)/c with the following unit cell parameters: 5c.(ClO4)3.2H2O: a=32.568(4)A, b=14.8593(17)A, c=19.443(2)A, alpha=90.00 degrees , beta=119.435(4) degrees , gamma=90.00 degrees , Dc=1.551 mg/m3, FW=956.71, F(000)=3932; 5e.(ClO4)3.H2O: a=15.807(2)A, b=16.756(2)A, c=16.161(2)A, alpha=90.00 degrees , beta=97.062(4) degrees , gamma=90.00 degrees , Dc=1.546 mg/m3, FW=988.83, F(000)=2032. The distance between the two Zn(II) ions is about 4.0 A. The structures show that two zinc ions can synergistically interact with the substrate DNA. With this novel structural characteristics, the dinuclear macrocyclic polyamine Zn(II) complexes via the synergetic effect between the two zinc ions can catalyze the cleavage of plasmid DNA (pUC18) with unprecedented speed at physiological conditions.  相似文献   

12.
We describe two uncommon roles for Zn2+ in enzyme KpnI restriction endonuclease (REase). Among all of the REases studied, KpnI REase is unique in its DNA binding and cleavage characteristics. The enzyme is a poor discriminator of DNA sequences, cleaving DNA in a promiscuous manner in the presence of Mg2+. Unlike most Type II REases, the active site of the enzyme comprises an HNH motif, which can accommodate Mg2+, Mn2+, or Ca2+. Among these metal ions, Mg2+ and Mn2+ induce promiscuous cleavage by the enzyme, whereas Ca2+-bound enzyme exhibits site-specific cleavage. Examination of the sequence of the protein revealed the presence of a zinc finger CCCH motif rarely found in proteins of prokaryotic origin. The zinc binding motif tightly coordinates zinc to provide a rigid structural framework for the enzyme needed for its function. In addition to this structural scaffold, another atom of zinc binds to the active site to induce high fidelity cleavage and suppress the Mg2+- and Mn2+-mediated promiscuous behavior of the enzyme. This is the first demonstration of distinct structural and catalytic roles for zinc in an enzyme, suggesting the distinct origin of KpnI REase.  相似文献   

13.
Bacteriophage phi X174 encoded gene A protein is an enzyme required for initiation and termination of successive rounds of rolling circle phi X DNA replication. This enzyme catalyses cleavage and ligation of a phosphodiester bond between nucleotide residues G and A at the phi X origin. The cleavage reaction which occurs during initiation involves formation of a free GOH residue at one end and a covalent bond between tyrosine-OH of the gene A protein and 5' phosphate of the A residue, at the other end of the cleavage site. During termination the covalently bound gene A protein cleaves the phosphodiester bond between G and A at the regenerated origin and ligates the 3' and 5' ends of the displaced genome-length viral DNA to form a circle. Since tyrosyl-OH mediated rearrangements of phosphodiester bonds in DNA may also apply to other enzymes involved in replication or recombination such as topoisomerases we have studied this interesting mechanism in greater detail. Analysis of 32P-labelled gene A protein-DNA complex by tryptic digestion followed by sequencing of 32P-containing peptides showed that two tyrosyl residues in the repeating sequence tyr-val-ala-lys-tyr-val-asn-lys participate in phosphodiester bond cleavage. Either one of these tyrosyl residues can function as the acceptor of the DNA chain. In an alpha-helix the side chains of these tyrosyl residues are in juxtaposition. An enzymatic mechanism is proposed in which these two tyrosyl-OH groups participate in an alternating manner in successive cleavage and ligations which occur during phosphodiester bond rearrangements of DNA.  相似文献   

14.
The fruit bodies of Lentinus edodes produce two acid nucleases, nucleases Le1 and Le3, both of which are thought to be candidates for the enzymes producing a tasty substance, 5'-GMP. To obtain the basic information on the mechanism of production of 5'-GMP, and structure-function relationship of these nucleases, the primary structure of nuclease Le1 was estimated by both protein chemistry and gene cloning. Nuclease Le1 is a glycoprotein and consists of 290 amino acid residues, and about 2 and 6 residues of hexosamine and neutral sugar, respectively. The nucleotide sequence of cDNA and genomic DNA encoding nuclease Le1 indicated the presence of 20 amino acid residues of a signal peptide. Nuclease Le1 has 115 and 108 residues of identical amino acid residues with nucleases P1 and S, respectively. The amino acid residues concerning the coordination with Zn2+ in nuclease P1 are all conserved in nuclease Le1. Nuclease Le1 contains 8 half-cystine residues and 4 of them are located at the same places as those of nucleases P1 and S.  相似文献   

15.
New glucopyranosyl Schiff base zinc complexes, [Zn(GlcSal)(2) ] (1; GlcSalH=N-(2-deoxy-β-D-glucopyranos-2-yl-salicylaldimine) and [Zn(AcOGlcSal)(2) ] (2; AcOGlcSalH=N-(2-deoxy-β-D-1,3,4,6-tetraacetylglucopyranos-2-yl-salicylaldimine) were synthesized, and characterized by spectral and analytical methods. The interaction between the Zn complexes and mononucleotides was investigated by (1) H-NMR, (31) P-NMR and UV/VIS spectroscopies. Mononucleotides, cytidine 5'-monophosphate (CMP) and uridyl 5'-monophosphate (UMP), interacted with these complexes to form a 1?:?1 complex with 1 and a 1?:?2 complex with 2, depending on the presence of the OH group of glucopyranosyl substituents. The DNA-cleavage activities of 1 and 2 were studied using plasmid DNA (pBR322) in a medium of 5?mM Tris?HCl/50?mM NaCl buffer in the presence of H(2) O(2) . The DNA-cleavage activity decreased in the order of 2>1>Zn(OAc)(2) , indicating the significant promoting effect of the glucopyranosyl Schiff base ligand and the participation of the glucopyranosyl OH groups in the cleavage mechanism. The mechanism of the DNA cleavage by 1 and 2 was investigated by evaluation of the effect of a HO(.) radical scavenger and a singlet-oxygen ((1) O(2) ) quencher under aerobic conditions. The former exhibited little effect, excluding the HO(.) radical as an active species and supporting the hydrolysis mechanism for the main process of the DNA cleavage. The latter quencher somewhat hindered the cleavage, indicating the partial participation of a (1) O(2) as a competitive active species in the present system.  相似文献   

16.
Bowen LM  Dupureur CM 《Biochemistry》2003,42(43):12643-12653
Restriction enzymes are important model systems for understanding the mechanistic contributions of metal ions to nuclease activity. These systems are unique in that they combine distinct functions which have been shown to depend on metal ions: high-affinity DNA binding, sequence-specific recognition of DNA, and Mg(II)-dependent phosphodiester cleavage. While Ca(II) and Mn(II) are commonly used to promote DNA binding and cleavage, respectively, the metal ion properties that are critical to the support of these functions are not clear. To address this question, we assessed the abilities of a series of metal ions to promote DNA binding, sequence specificity, and cleavage in the representative PvuII endonuclease. Among the metal ions tested [Ca(II), Sr(II), Ba(II), Eu(III), Tb(III), Cd(II), Mn(II), Co(II), and Zn(II)], only Mn(II) and Co(II) were similar enough to Mg(II) to support detectable cleavage activity. Interestingly, cofactor requirements for the support of DNA binding are much more permissive; the survey of DNA binding cofactors indicated that Cd(II) and the heavier and larger alkaline earth metal ions Sr(II) and Ba(II) were effective cofactors, stimulating DNA binding affinity 20-200-fold. Impressively, the trivalent lanthanides Tb(III) and Eu(III) promoted DNA binding as efficiently as Ca(II), corresponding to an increase in affinity over 1000-fold higher than that observed under metal-free conditions. The trend for DNA binding affinity supported by these ions suggests that ionic radius and charge are not critical to the promotion of DNA binding. To examine the role of metal ions in sequence discrimination, we determined specificity factors [K(a)(specific)/K(a)(nonspecific)] in the presence of Cd(II), Ba(II), and Tb(III). Most interestingly, all of these ions compromised sequence specificity to some degree compared to Ca(II), by either increased affinity for a noncognate sequence, decreased affinity for the cognate sequence, or both. These results suggest that while amino acid-base contacts are important for specificity, the properties of metal ion cofactors at the catalytic site are also critical for sequence discrimination. This insight is invaluable to our efforts to understand and subsequently design sequence-specific nucleases.  相似文献   

17.
T5 5′–3′ exonuclease is a member of a homologous group of 5′ nucleases which require divalent metal co-factors. Structural and biochemical studies suggest that single-stranded DNA substrates thread through a helical arch or hole in the protein, thus bringing the phosphodiester backbone into close proximity with the active site metal co-factors. In addition to the expected use of Mg2+, Mn2+ and Co2+ as co-factors, we found that divalent zinc, iron, nickel and copper ions also supported catalysis. Such a range of co-factor utilisation is unusual in a single enzyme. Some co-factors such as Mn2+ stimulated the cleavage of double-stranded closed-circular plasmid DNA. Such endonucleolytic cleavage of circular double-stranded DNA cannot be readily explained by the threading model proposed for the cleavage of substrates with free 5′-ends as the hole observed in the crystal structure of T5 exonuclease is too small to permit the passage of double-stranded DNA. We suggest that such a substrate may gain access to the active site of the enzyme by a process which does not involve threading.  相似文献   

18.
Endonuclease IV is the archetype for a conserved apurinic/apyrimidinic (AP) endonuclease family that primes DNA repair synthesis by cleaving the DNA backbone 5' of AP sites. The crystal structures of Endonuclease IV and its AP-DNA complex at 1.02 and 1.55 A resolution reveal how an alpha8beta8 TIM barrel fold can bind dsDNA. Enzyme loops intercalate side chains at the abasic site, compress the DNA backbone, bend the DNA approximately 90 degrees, and promote double-nucleotide flipping to sequester the extrahelical AP site in an enzyme pocket that excludes undamaged nucleotides. These structures suggest three Zn2+ ions directly participate in phosphodiester bond cleavage and prompt hypotheses that double-nucleotide flipping and sharp bending by AP endonucleases provide exquisite damage specificity while aiding subsequent base excision repair pathway progression.  相似文献   

19.
The nuclease reactivity and specificity of a cloned tract of poly X (dA-dT) X poly(dA-dT) has been explored. Digestion with DNAse I, Mung Bean nuclease, S1 nuclease, DNAse II, and copper (1,10-phenanthroline)2 on a 256 base pair restriction fragment containing d(AT)14A revealed a dinucleotide repeat structure for the alternating sequence. Furthermore, conditions which wind or unwind the linear DNA had little effect on the reactivity of the AT insert. These preferred cleavages offer insights to structural alterations within the DNA helix which differ from A, B, or Z-DNA. Nucleation into flanking sequences by this structural alteration was not observed.  相似文献   

20.
The binuclear zinc(II) complex, [Zn2(HPTP)(CH3COO)]2+ was found highly active to cleave DNA (double-strand super-coiled DNA, pBR322 and phix174) in the presence of hydrogen peroxide. However, no TBARS (2-thiobarbituric acid reactive substance) formation was detected in a solution containing 2-deoxyribose (or 2'-deoxyguanosine, etc); where (HPTP) represents N,N,N'-N'-tetrakis(2-pyridylmethyl)-1,3-diamino-2-propanol. These facts imply that DNA cleavage reaction by the binuclear Zn(II)/H2O2 system should be due to a hydrolytic mechanism, which may be attributed to the enhanced nucleophilicity but depressed electrophilicity of the peroxide ion coordinated to the zinc(II) ion. DFT (density-functional theory) calculations on the peroxide adduct of monomeric zinc(II) have supported the above consideration. Similar DFT calculations on the peroxide adducts of the Al(III) and La(III) compounds have revealed that electrophilicity of the peroxide ion in these compounds is strongly reduced. This gives an important information to elucidate the fact that La3+ can enhance the growth of plants under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号