首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new electron-deficient tentacle porphyrin meso-tetrakis[2,3,5,6-tetrafluoro-4-(2-trimethylammoniumethylamine)phenyl]porphyrin (TθF4TAP) has been synthesized. The binding interactions of TθF4TAP with DNA polymers were studied for comparison to those of an electron-deficient tentacle porphyrin and an electron-rich tentacle porphyrin; these previously studied porphyrins bind to DNA primarily by intercalative and outside-binding modes, respectively. The three tentacle porphyrins have similar size and shape. The basicity of TθF4TAP indicated that it has electronic characteristics similar to those of the intercalating electron-deficient tentacle porphyrin. However, TθF4TAP binds to calf thymus DNA, [poly(dA-dT)]2, and [poly(dG-dC)]2 in a self-stacking, outside-binding manner under all conditions. Evidence for this binding mode included a significant hypochromicity of the Soret band, a conservative induced CD spectrum, and the absence of an increase in DNA solution viscosity. As found previously for the electron-rich porphyrin, the results suggest that combinations of closely related self-stacked forms coexist. The mix of forms depended on the DNA and the solution conditions. There are probably differences in the detailed features of the self-stacking adducts for the two types of tentacle porphyrins, especially at high R (ratio of porphyrin to DNA). At low R values, the induced CD signal of TθF4TAP/CT DNA resembled that of TθF4TAP/[poly(dA-dT)]2, suggesting that TθF4TAP binds preferentially at AT regions. Competitive binding experiments gave evidence that TθF4TAP binds preferentially to [poly(dA-dT)]2 over [poly(dG-dC)]2. Thus, despite the long, positively charged, flexible substituents on the porphyrin, the binding of TθF4TAP is significantly affected by base-pair composition. Similar characteristics were found previously for the electron-rich tentacle porphyrin. Thus, significant changes in electron richness have relatively minor effects on this outside binding selectivity for AT regions. TθF4TAP is the first porphyrin with electron deficiency and shape similar to intercalating porphyrins that does not appear to intercalate. All porphyrins reported to intercalate have had pyridinium substituents. Thus, the electronic distribution in the porphyrin ring, not just the overall electron richness, may play a role in facilitating intercalation. © 1997 John Wiley & Sons, Inc. Biopoly 42: 203–217, 1997  相似文献   

2.
In order to explore the effect of substitution patterns on the photocytotoxicity of glycoconjugated porphyrins, we synthesized and characterized a ‘complete set’ of tetrakis(perfluorophenyl)porphyrins having β-d-glucopyranosylthio groups on the phenyl ring. Among five possible derivatives, trans-substituted S-glucosylated porphyrin trans-2OH exerted outstanding photocytotoxicity (EC50 value was <5 nM) in HeLa cells. The excellent photocytotoxicity of trans-2OH was found to be attributable to several factors, namely high optical transition probability in aqueous media, efficient type I photoreactions and enhanced cellular uptake.  相似文献   

3.
Sixteen porphyrins, including neutral, anionic and cationic meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins were herein evaluated in terms of their photosensitizing properties against HaCaT keratinocytes. After an initial screening, the cationic porphyrins were studied in more details, by both determining their log POW and performing PDT assays in lower porphyrin concentrations. Porphyrins presenting two or more adjacent positively charged groups, directly linked to the macrocycle meso positions, appeared to be the most effective photosensitizers. The present study also included the dicationic 5,10-diphenyl-15,20-di(1-methylpyridinium-4-yl)porphyrin (14b), which has previously shown promising results on a psoriasis-like in vivo model. Overall results indicated that the beneficial effect related to porphyrins on psoriasis can be related to the decreasing of keratinocyte viability. Furthermore, some of the cationic porphyrins studied appeared as candidates to be utilized as photosensitizers for psoriasis treatment.  相似文献   

4.
Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his+ reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H2O2/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H2O2/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H2O2 formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.  相似文献   

5.
The π-cation radicals of the metalloporphyrins magnesium octaethylporphyrin (MgOEP), magnesium tetraphenylporphyrin (MgTPP), and zinc tetraphenylporphyrin (ZnTPP), as well as the free base porphyrins of tetratolylporphyrin (H2TTP) and tetraphenylporphyrin (H2TPP) have been formed at liquid nitrogen temperatures in a rigid matrix of alkyl chloride glasses containing CCl4 or 1,1,2,2-tetrachloroethane (TCE), following photolysis of the porphyrins with visible light. The reaction proceeds via electron transfer from the photoexcited porphyrin to the solvent molecules; the efficiency of thie electron transfer may be qualitatively evaluated in terms of electron tunneling in the solid matrices. This is the first report of the photochemical formation of a free base porphyrin π-cation radical species.  相似文献   

6.
In this work we investigated the outside binding mode between a cationic porphyrin and a nucleotide pair of DNA, adenine-thymine and guanine-cytosine, in a supramolecular assembly. We used two structural models (semi-extended, extended) that differ in the size of porphyrin, two kinds of theoretical methods: a three layer ONIOM (B3LYP/6-31G(d)/PM3/UFF), and DFT B3LYP/6-31G(d,p), and three cationic porphyrins. ONIOM method was first tested on the semi-extended model that was calculated in four environments: gas phase, solution phase using an explicit solvent model (H2O), in the presence of a sodium cation (Na+) and in both (H2O + Na+). From interaction energy results, we found that the affinity of the cationic substituent by the adenine nucleotide is favored upon the thymine nucleotide. The extended model that considers the whole porphyrin was applied in the gas phase to the four nucleotides. All the cationic porphyrins showed affinity by the nucleotides in the order adenine > guanine > thymine > cytosine. The interaction energy values for outside binding showed a strong porphyrin-nucleotide interaction (≈-90 kcal?mol-1), that slightly varies between the nucleotides suggesting that this kind of cationic porphyrin has a little selectivity for some of them. We also found that the effect of the nature of the cationic substituent (chain length) in the porphyrin on the outside binding is small (≈2–13 kcal?mol-1). Coherence between the results showed that ONIOM is a useful tool to get a reasonable molecular geometry to be used as a starting point in calculations of density functional theory.
Figure
A three-layer ONIOM model for the outside binding of cationic porphyrins and nucleotide pair DNA  相似文献   

7.
Two new porphyrins, meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3,4DMPP) and meso-tris-3-methoxy-4-hydroxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3M4HPP), and their ruthenium analogs obtained by coordination of [Ru(bpy)2Cl]+ groups (where bpy = 2,2′-bipyridine) to the pyridyl nitrogens have been synthesized and studied by electronic absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry. These ruthenated porphyrins couple Ru chromophores to porphyrins containing electroactive meso-substituents. The highest energy electronic absorption for the ruthenated complexes is assigned as a bpy(π) → bpy(π*) intraligand charge transfer while the next lowest energy electronic absorption is assigned as Ru(dπ) → bpy(π*) metal-to-ligand charge transfer (MLCT) transition. The RuIII/II couples occur at approximately 0.95 V versus the SHE reference electrode in acetonitrile solutions. The first oxidation of the porphyrin is localized on the 3,4-dimethoxyphenyl and 3-methoxy-4-hydroxyphenyl substituents, respectively. Electroactive surfaces result from adsorption of these compounds onto glassy carbon electrodes followed by anodic cycling in acidic media.  相似文献   

8.
Preparation of the water-soluble, kinetically labile, high-spin iron(II) tetrakis(4-sulfonatophenyl)porphyrin, Fe(II)TPPS4−, has been realized in neutral or weakly acidic solutions containing acetate buffer. The buffer played a double role in these systems: it was used for both adjusting pH and, via formation of an acetato complex, trapping trace amounts of iron(III) ions, which would convert the iron(II) porphyrins to the corresponding iron(III) species. Fe(II)TPPS4− proved to be stable in these solutions even after saturation with air or oxygen. In the absence of acetate ions, however, iron(II) ions play a catalytic role in the formation of iron(III) porphyrins. While the kinetically inert iron(III) porphyrin, Fe(III)TPPS3−, is a regular one with no emission and photoredox properties, the corresponding iron(II) porphyrin displays photoinduced features which are typical of sitting-atop complexes (redshifted Soret absorption and blueshifted emission and Q absorption bands, photoinduced porphyrin ligand-to-metal charge transfer, LMCT, reaction). In the photolysis of Fe(II)TPPS4− the LMCT process is followed by detachment of the reduced metal center and an irreversible ring-opening of the porphyrin ligand, resulting in the degradation of the complex. Possible oxygen-binding ability of Fe(II)TPPS4− (as a heme model) has been studied as well. Density functional theory calculations revealed that in solutions with high acetate concentration there is very little chance for iron(II) porpyrin to bind and release O2, deviating from heme in a hydrophobic microenvironment in hemoglobin. In the presence of an iron(III)-trapping additive that is much less strongly coordinated to the iron(II) center than the acetate ion, Fe(II)TPPS4− may function as a heme model.  相似文献   

9.
Due to their spectroscopic properties porphyrins are of special interest for a variety of applications, ranging from drug development or targeting to material sciences and chemical and biological sensors. Since chemical syntheses are limited in terms of regio- and stereoselective functionalization of porphyrins, a biosynthetic approach with tailored enzyme catalysts offers a promising alternative. In this paper, we describe assembly of the entire heme biosynthetic pathway in a three-plasmid system and overexpression of the corresponding genes with Escherichia coli as a host. Without further optimization, this approach yielded remarkable porphyrin production levels, up to 90 μmol/liter, which is close to industrial vitamin B12 production levels. Different combinations of the genes were used to produce all major porphyrins that occur as intermediates in heme biosynthesis. All these porphyrin intermediates were obtained in high yields. The product spectrum was analyzed and quantified by using high-performance liquid chromatography. Intriguingly, although protoporphyrin IX could be produced at high levels, overexpressed Bacillus subtilis ferrochelatase could not convert this substrate appreciably into heme. However, further investigation clearly revealed a high level of expression of the ferrochelatase and a high level of activity in vitro. These results may indicate that heme has a regulatory impact on the iron uptake of E. coli or that the ferrochelatase is inactive in vivo due to an incompatible enzyme interaction.  相似文献   

10.
The interaction of meso-tetra(4-N-hydroxyethylpyridyl)porphyrin, meso-tetra(3-N-hydroxyethylpyridyl)porphyrin, and their zinc complexes with bovine serum albumin (BSA) was studied by electronic spectroscopy, CD, and equilibrium dialysis at pH 7.2. The titration of the porphyrins with BSA was accompanied by a decrease in light absorption and a bathochromic shift of the Soret band, as well as by the appearance of an isobestic point. The porphyrin interaction with BSA also led to the induction of positive CD spectra in the visible region, which is explained by the porphyrin sorption on the protein globule. The equilibrium dialysis helped in determining the stoichiometry of binding and the binding constants of the porphyrins under study with BSA using Scatchard plots. This interaction is nonspecific and reversible.  相似文献   

11.
We demonstrate that porphyrins can be used as efficient cross-linkers to generate a new class of hydrogels with enabling optical properties. Tetracarboxylic acid porphyrins reacted with PEG diamines to form a condensation polyamide in a range of appropriate conditions, with respect to reaction time, diisopropylethylamine initiator concentration, porphyrin-to-PEG ratio, porphyrin concentration, and PEG size. The network structure of the hydrogel maintained a porphyrin spacing that prevented excessive fluorescence self-quenching despite high porphyrin density. The near-infrared properties readily enabled low background, noninvasive fluorescence monitoring of the implanted hydrogel in vivo, as well as its image-guided surgical removal in real time using a low-cost fluorescence camera prototype. Emission could be tuned by incorporating copper metalloporphyrins into the network. The approach of creating hydrogels using cross-linking porphyrin comonomers creates opportunities for new polymer designs with strong optical character.  相似文献   

12.
The spectroscopic and electrochemical properties of two isomeric forms of the supramolecular species [μ-(H2TPyP){Ru(bpy)2Cl}4]4+ (H2TPyP = 5,10,15,20-tetra(3- or 4-pyridyl)porphyrin, bpy = 2,2′-bipyridine) have been compared and consistently interpreted with the aid of molecular orbital calculations. In these complexes, the HOMO and LUMO levels are predominantly localized in the ruthenium complexes and porphyrin ring, respectively. There is an extensive mixing of the wave functions of both components in other MOs, however, and their contributions are reflected in the spectroelectrochemical and spectroscopic behavior. For example, the electronic mixing is enough to allow the energy-transfer from the peripheral complexes to the porphyrin ring, as well as the appearance of a RuII(dπ) → H4P(pπ*) charge-transfer band at 700 nm in the bis-protonated [μ-(H4TPyP){Ru(bpy)2Cl}4]4+ species, showing the strong stabilization of the porphyrin LUMO levels.  相似文献   

13.
1. Iron protoporphyrin IX was required for the growth of H. influenzae. It could be replaced by protoporphyrin IX. When grown on protoporphyrin evidence was obtained for the presence of Fe porphyrin in the organism. It was concluded that the organism could insert iron into the protoporphyrin ring. 2. In the smooth strains, other porphyrins containing no iron such as deutero-, hemato-, meso-, and coproporphyrins could not replace protoporphyrin for growth. Since protoporphyrin has two vinyl groups which other porphyrins lack, it was concluded that the two vinyl groups were essential for growth. 3. When porphyrins lacking vinyl groups were converted chemically into iron porphyrins and then supplied to the organisms it was found that these iron porphyrins supported growth. It was concluded that the "smooth" organisms were able to insert iron only into the porphyrin containing the vinyl groups; i.e., protoporphyrin. One function of the vinyl groups then was to permit iron to be inserted biologically into the porphyrin ring. 4. An anomalous behavior in the rough Turner strain was observed and discussed. This organism was able to insert iron into mesoporphyrin at low concentrations but was inhibited by this compound at higher concentrations. In all other reactions with the porphyrins this rough strain behaved in the same was as did the smooth strains. 5. All strains which were grown on iron porphyrins lacking vinyl groups could not reduce nitrate to nitrite. When grown on protoporphyrin or Fe protoporphyrin reduction of nitrate occurred. It was concluded that the nitrate-reducing mechanism required the presence of the vinyl groups either for its formation or function. 6. The porphyrins lacking iron and lacking vinyl groups inhibited the growth of H. influenzae on Fe protoporphyrin. The inhibition between a porphyrin and Fe protoporphyrin was a competitive one. It was suggested that the porphyrin inhibited the growth-promoting properties of Fe protoporphyrin by attaching on to a particular apoprotein, thus preventing the formation of a heme catalyst. Likewise, competition between two growth-promoting Fe porphyrins for apoenzymes could be shown to occur. 7. Protoporphyrin and Fe protoporphyrin supported growth. When their propionic acid side chains were esterified they no longer supported growth. It was suggested that the esterified carboxyl groups could not attach to the specific apoproteins to form the heme enzymes and so could not act to support growth. For the same reason the inhibitory action of porphyrins lacking vinyl groups could be prevented by esterifying their propionic acid groups.  相似文献   

14.
Zhao P  Xu LC  Huang JW  Zheng KC  Fu B  Yu HC  Ji LN 《Biophysical chemistry》2008,135(1-3):102-109
Four tricationic pyridium porphyrins appending hydroxyphenyl, methoxyphenyl, propionoxyphenyl or carboxyphenyl group at meso-20-position of porphyrin core have been synthesized and their abilities to bind and cleave DNA have been investigated. Using a combination of absorption, fluorescence, circular dichroism (CD) spectra, thermal DNA denaturation as well as viscosity measurements, their binding modes and intrinsic binding constants (Kb) to calf DNA (CT DNA) were comparatively studied and also compared with those of 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP). The results suggest that the Kb values of these porphyrins are greatly influenced by the number of positive charges and steric hindrance. Theoretical calculations applying the density functional theory (DFT) have been carried out and explain their DNA-binding properties reasonably. The efficiency of DNA photocleavage by these porphyrins shows high dependence on the values of Kb.  相似文献   

15.
Several bis-beta-cyclodextrin porphyrins have been prepared as supramolecular receptors of carotenoids. The binding constants of carotenoids to receptors were determined by quenching the fluorescence of the porphyrins on hydrophobic binding of carotenoids within the cavities of cyclodextrins. K(a)=8.3 x 10(6) M(-1) was calculated for binding of beta,beta-carotene to bis-beta-cyclodextrin Zn porphyrin. The corresponding Ru complex catalyzes the central cleavage of carotenoids in the presence of tert-butyl hydroperoxide in a biphasic system.  相似文献   

16.
A series of meso-5,10,15-tris(N-methyl-4-pyridiniumyl)-20-(4-alkylamidophenyl) porphyrins were synthesized by derivatizing the amino group on the phenyl ring with the following hydrophobic groups: –C(O)C7F15, –C(O)CHCH2, C(O)CH3, –C(O)C7H15, and –C(O)C15H31. The cationic tris-pyridiumyl porphyrin core serves as a DNA binding motif and a photosensitizer to photomodify DNA molecules. The changes of the UV–Vis absorption spectra during the titration of these porphyrins with calf thymus DNA revealed a large bathochromic shift (up to 14 nm) and a hypochromicity (up to 55%) of the porphyrins Soret bands, usually considered as proof of porphyrin intercalation into DNA. Association constants (K) calculated according to the McGhee and von Hippel model, were in the range of 106–107 M−1. An increase in hydrophobicity of the substituents at the 20−meso-position produced higher binding affinity. These porphyrins caused photomodification of the supercoiled plasmid DNA when a green laser beam at 532 nm was applied. Those with higher surface activity acted more efficiently as DNA photomodifiers. The porphyrin with a perfluorinated alkyl chain (–COC7F15) at the meso-20-position inhibited the growth of gram-positive bacteria (S. aureus, or S. epidermidis). Other porphyrins exhibited moderate activity against both gram-negative and gram-positive organisms.  相似文献   

17.
Solution properties of three manganese porphyrins, in monomeric form, were investigated. These were the 'picket-fence-like' porphyrin Mn(III)-alpha,alpha,alpha,beta- tetra-ortho(N-methylisonicotinamidophenyl)porphyrin (Mn(III)PFP) and two 'planar unhindered' porphyrins, the Mn(III)TMPyP (tetrakis (4-N-methylpyridyl)porphyrin) and Mn(III)TAP (tetra(4-N,N,N-trimethylanilinium)porphyrin). The porphyrin properties studied were: the absorption spectra in their manganic and manganous forms; acid/base properties of the aquo complexes; the effect of potential axial ligands (up to a concentration of 0.1 mol dm-3) and their one electron reduction potentials. Knowing these properties, the reaction of the Mn(III) porphyrins with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the Mn(III) porphyrins, which governs the catalytic efficiency of the metalloporphyrins upon the disproportionation of the superoxide radical, was 5.1 X 10(7) to 4.0 X 10(5) dm3 mol-1 s-1, depending on the pH and the nature of the metalloporphyrin. These values are at least one order of magnitude lower than found for Fe(III)TMPyP. One electron reduction of the three Mn(III) porphyrins by eaq-, CO2-, CH2OH and (CH3)2COH had similar second-order rate constants (10(9)-10(10) dm3 mol-1 s-1). That for (CH3)2(CH2)COH was about 10(5) dm3 mol-1 s-1. Reduction in all cases produced the corresponding Mn(II) porphyrin and no intermediate was found. The oxidation reaction of the Mn(II) porphyrins by O2- was approximately two orders of magnitude faster when compared to the reduction of Mn(III) porphyrins with the same radical. Since the reactivities of O2- towards the three manganese (III) compounds follow their reduction potentials, it is suggested that these reactions are governed by an outer-sphere mechanism. This suggestion is corroborated by the finding that water molecules acting as axial ligands, in these aqueous solution systems, are not replaced by another potential ligand when the latter is in the concentration range of 100 mM or less.  相似文献   

18.
Two dodecachlorinated porphyrins, 2,3,7,8,12,13,17,18-octachloro-5,10,15,20-tetra(4-chlorophenyl)porphyrin free base (TCl12PPH2) and its nickel compound (TCl12PPNi), have been synthesized. Single-crystal X-ray diffraction analysis shows that porphyrin rings are heavily distorted and exhibit saddled conformations. The Soret and Q bands of two compounds are red-shifted compared to their non-chlorinated counterparts. Theoretical calculations reveal that the optical band gap of TCl12PPH2 is reduced, whereas that of TCl12PPNi remains almost the same as to its non-chlorinated nickel compound due to the concurrent lowering of HOMO and LUMO energy levels. The frontier molecular orbitals are degenerated due to the decrease of symmetry of the molecules.  相似文献   

19.
Huang X  Nakanishi K  Berova N 《Chirality》2000,12(4):237-255
During the last few years, porphyrins and metalloporphyrins have attracted widespread attention as chromophores for studies in circular dichroism (CD), an indispensable chiroptical tool for monitoring chiral interactions. This review summarizes the multifaceted properties of porphyrins and metalloporphyrins, powerful CD chromophores that are characterized by their intense and red-shifted Soret band, propensity to undergo pi-pi stacking, facile incorporation of metals, and ease in varying solubility. Such attributes make porphyrins one of the most attractive and sensitive chromophores used in CD studies. They offer possibilities for studying the stereochemistry of chiral porphyrin assemblies, large organic molecules, biopolymers, and compounds available in miniscule quantities. The tendency of porphyrins to undergo pi-pi stacking and zinc porphyrins to coordinate with amines enable the CD exciton chirality method to be extended to configurational assignments of flexible compounds containing only one stereogenic center. Various artificial porphyrin receptors have been synthesized for the recognition of biologically important chiral guests such as carbohydrates, amino acids, and their derivatives. The induced CD of the host porphyrin Soret band reflects the identity of guests and binding modes of host/guest complexation with high sensitivity.  相似文献   

20.
For constructing a bifunctional antioxidative enzyme with both superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, a supramolecular artificial enzyme was successfully constructed by the self-assembly of the Mn(III)meso-tetra[1-(1-adamantyl methyl ketone)-4-pyridyl] porphyrin (MnTPyP-M-Ad) and cyclodextrin-based telluronic acid (2-CD-TeO3H) through host-guest interaction in aqueous solution. The self-assembly of the adamantyl moieties of Mn(III) porphyrin and the β-CD cavities of 2-CD-TeO3H was demonstrated by the NMR spectra. In this supramolecular enzyme model, the Mn(III) porphyrin center acted as an efficient active site of SOD and tellurol moiety endowed GPx activity. The SOD-like activity (IC50) of the new catalyst was found to be 0.116 μM and equals to 2.56% of the activity of the native SOD. Besides this, supramolecular enzyme model also showed a high GPx activity, and a remarkable rate enhancement of 27-fold compared to the well-known GPx mimic ebselen was observed. More importantly, the supramolecular artificial enzyme showed good thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号