首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

2.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

3.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

4.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

5.
In air, hydrated ethanolic (95%) solution of 2-(aminomethyl) substituted pyridine and quinoline, on stirring with half equivalent of Cu(OAc)2·H2O, respectively afforded [Cu(bpca)(OAc)(H2O)]·H2O (1) and [Cu(bqca)(OAc)(H2O)] (2) {bpca = bis(2-pyridylcarbonyl)diimide ion and bqca = bis(2-quinolylcarbonyl)diimide ion} in good yields. These reactions involve oxidation of the methylene group and formation of the bond between nitrogen and carbon in N-C(O) through coupling. The complex [Cu(pqca)(OAc)(H2O)]3[Cu2(OAc)4(EtOH)2]1.5 (3) {pqca = (2-pyridylcarbonyl)(2-quinolylcarbonyl)diimide ion} was synthesized by stirring an ethanolic solution of the Schiff base [(2-pyridyl)-N-((2-quinolyl)methylene)methanamine] (L1) and with one equivalent of Cu(OAc)2·H2O. A plausible mechanism for the conversion has been proposed. The free ligands were isolated as crystalline solids from compounds 1-3, by extrusion of Cu2+ ion using EDTA2−. The molecular structures of 1-3 and bqcaH were established by X-ray crystallography and compounds having quinolyl group have π-stacking interactions.  相似文献   

6.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

7.
Hydrothermal synthesis has afforded five d10 configuration divalent metal diphenate coordination polymers containing pyridyl-piperazine type ligands, which were structurally characterized by single-crystal X-ray diffraction. {[Cd(diphenate)(3-bpmp)(H2O)]·0.5H2O}n (1, 3-bpmp = bis(3-pyridylmethyl)piperazine) has a double layer topology. Its perchlorate-containing analog {[Cd3(diphenate)4(H23-bpmp)(H3-bpmp)(H2O)2](ClO4)·7H2O}n (2) possesses a very rare 4-connected 658 dmp topology based on anionic trinuclear nodes. {[Cd(diphenate)(4-bpfp)]·H2O}n (3, 4-bpfp = bis(4-pyridylformyl)piperazine) manifests a non-interpenetrated diamondoid lattice, while the related compound [Cd(diphenate)(4-bpmp)(H2O)]n (4, 4-bpmp = bis(4-pyridylmethyl)piperazine) has a simple (4,4) grid topology. {[Zn(diphenate)(4-bpmp)]·0.5H2O}n (5) displays a 2-fold interpenetrated diamondoid lattice. Luminescent properties of these materials are also reported.  相似文献   

8.
Six new coordination polymers based on V-shaped linkage 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (bpt) and transition metal ions, [Co(bpt)(pm)0.5(H2O)]n · 3nH2O (1), [Cu2(bpt)(pm)(H2O)4]n (2), [Co(bpt)(pydc)]n · 2nCHCl3 · nH2O (3), [Cu2(bpt)(pydc)2(H2O)2]n (4), [Cu2(bpt)(pydco)2(H2O)2]n · nH2O (5) and [Cd(bpt)(pydco)]n (6) (H4pm = pyromellitic acid, H2pydc = pyridine-2,6-dicarboxylic acid, H2pydco = pyridine-2,6-dicarboxylic acid N-oxide), have been synthesized under the intervention of various polycarboxylate ligands. Complex 1 exhibits a 3-D 4-connected structure with 1-D nanosized open channels encapsulated lots of water molecules. Complex 2 represents a 2-D grid containing two types of rectangular windows. When pydc and pydco instead of pm, complexes 3 and 6 were obtained with highly undulated 2-D layers. The interlayers of 3 are filled with two kinds of solvent molecules, whereas 6 is a double-layered framework without free molecules. Complexes 4 and 5 consist of two distinct 1-D infinite chains held together to form different 2-D supramolecular networks. Importantly, bpt spacer shows changeful conformational geometries and generates complicated crystalline architectures with the introduction of polycarboxylate ligands. Additionally, thermal stability of complexes 1, 3 and 5, fluorescent properties of 6 and X-ray powder diffraction of 1 have also been investigated.  相似文献   

9.
Hydrothermal reactions between H4ODPA (2,2′,3,3′-oxydiphthalic acid) and metal ion salts of Ba2+, Cu2+, Zn2+ and Gd3+ afford four novel coordination polymers [Ba(H2ODPA)(H2O)4] · H2O (1), [Cu2(ODPA)(H2O)3] · H2O (2), Zn2(ODPA)(H2O)2 (3) and [Gd(HODPA)(H2O)3.5] · H2O (4), accordingly. These polymers show great differences in regard to their structures and properties originated from the variation of size and coordination geometry of the metal ions. Compound 1 presents puckered achiral layer structure with (4.82) topology with helices, 2 has a 63 topology with copper tetramer as SBUs, 3 has chiral layer with two kinds of helices built up from Zn-binuclear “paddle-wheel” like SBUs, and 4 features a simple 1D helix with opposite chirality. Compound 3 shows obvious fluorescent emissions upon excitation. Compound 2 shows ferromagnetic interactions between CuII centers bridged by carboxylate groups, whereas compound 4 presents weak ferromagnetic interaction between GdIII ions.  相似文献   

10.
Three ternary zinc complexes of the open chain polycarboxylic acid, tricarballylic (1,2,3-propane-tricarboxylic) acid (PTCH3) have been isolated and characterized with crystallographic and physicochemical techniques. [Zn(PTCH)(phen)(H2O)]2 · 4H2O (1) (where phen = 1,10-phenanthroline) has a unique dinuclear structure, while [Zn(PTCH)(bpy)]n · 3nH2O (2) and [Zn(PTCH)(epy)]n · 4nH2O (3) (where bpy = 4,4′-bipyridine and epy = 1,2-bis(4-pyridine)ethane) have 2D polymeric structures. The bis-deprotonated ligand, in all three complexes, uses for coordination only two oxygen atoms, which belong to the same carboxylate in 1, and to two different carboxylates in 2 and 3.  相似文献   

11.
Four new fluconazole-bridged zinc(II) and cadmium(II) complexes with dicarboxylate co-ligands, namely [Zn(HFlu)(TPA)]n (1), {[Cd(HFlu)2(TPA)]·2CH3OH}n (2), [Zn(HFlu)2(Suc)(H2O)2]·H2O (3), and [Cd(HFlu)2(Suc)(H2O)2]·H2O (4), have been synthesized and characterized by elemental analysis, IR, TG, and single-crystal X-ray diffraction (HFlu = 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)-propan-2-ol, H2TPA = terephthalic acid, and H2Suc = succinic acid). Complex 1 displays a 2-D corrugated network with common (4,4) topology, in which two types of grids constructed by two bridging TPA dianions and two HFlu ligands are found. Complex 2 shows an unusual (3,6) coordination layer consisting of alternative PMPM Cd-HFlu helical chains in which the Cd(II) nodes are also fixed by terephthalate dianions in a cis fashion. The isostructural complexes 3 and 4 have 20-membered dimeric macrocyclic motifs with the Zn···Zn and Cd···Cd distances of 11.258(2) and 11.528(2) Å, respectively. The fluorescence and thermal stability of complexes 1-4 have also been investigated.  相似文献   

12.
By pH-value adjustment, the reactions of zinc salt, 1,3,5-benzenetricarboxylic acid (H3btc) and 4,4′-bipyridine (bpy) yield three coordination polymers, formulated as [Zn3(btc)2(bpy)(H2O)2]n (1), [Zn(Hbtc)(bpy)(H2O)]n · 3nH2O (2) and [Zn(Hbtc)(bpy)(H2O)]n · 4nH2O (3), respectively. The structure of 1 is a 3D network containing channels filled with bpy ligands. Compound 2 consists of twofold interpenetrating (10,3)-b networks, while compound 3 is a 2D layer structure. The fluorescent studies reveal that they exhibit intense violet luminescence in solid state.  相似文献   

13.
Reactions of zinc(II) ion with racemic malic acid (C4H6O5 = H3mal) result in the isolation of four new zinc(II) malato complexes: (NH4)[Zn(R-H2mal)3] · H2O (1), trans-[Zn(R-H2mal)(S-H2mal)(H2O)2] · 2H2O (2), (NH4)2[Zn(R-Hmal)(S-Hmal)] · 2H2O (3), and [Zn2(R-Hmal)(S-Hmal)(H2O)4]n · 2nH2O (4). Three R-malic acids in 1 act as bidentate ligands via their alcoholic and the central carboxy groups with Zn(II) ion, leaving the terminal carboxylic acid groups free. The R- and S-malates of 2 coordinate in a bidentate manner with zinc ion in trans-form. In 3, Zn(II) ion is coordinated by R- and S-malates in a tridentate fashion via their alcoholic and two carboxy groups. Complex 4 forms a two-dimensional layered structure through the links of a new dimeric unit [Zn2(R-Hmal)(S-Hmal)(H2O)4] with one of the oxygen atoms from the terminal carboxy group of malate ligand. The coordination of malates depends on pH variation, on Zn:malate ratio, and also on temperature. Tridentate chelation of malate in 3 is found between pH 4.5-9.0. The soluble monomeric species 1-3 have been investigated using 13C NMR spectra by long-time acquisition. The solution NMR spectra indicate that zinc malate complexes dissociate in H2O (D2O). Obvious downfield shifts of the central carboxy carbon atoms in 1-3 are observed compared with those of free malate, which indicate that these zinc malate complexes dissociate in aqueous solution.  相似文献   

14.
Four new coordination polymers namely {[Mn2(BT)(DPS)2(H2O)6]·10H2O}n (MnBTDPS), {[Co2(BT)(DPS)2(H2O)6]·10H2O}n (CoBTDPS), {[Cu2(BT)(DPS)(H2O)4]·5H2O}n (CuBTDPS) and {[Zn2(BT)(DPS)2]·6H2O}n (ZnBTDPS), where BT = 1,2,4,5-benzenetetracarboxylate and DPS = di(4-pyridyl) sulfide, were synthesized and characterized by thermal analysis, vibrational spectroscopy (Raman and infrared) and single crystal X-ray diffraction analysis. In all compounds, the DPS ligands are coordinated to metal sites in a bridging mode and the carboxylate moiety of BT ligands adopts a monodentate coordination mode, as indicated by the Raman spectra data through the Δν (νasym(COO) − νsym(COO)) value. According to X-ray diffraction analysis, MnBTDPS and CoBTDPS are isostructural and in these cases, the metal centers exhibit a distorted octahedral geometry. In CuBTBPP, the Cu2+ centers geometries are best described as square-pyramids, according to the trigonality index τ = 0.14 for Cu1 and τ = 0.10 for Cu2. On the other hand, in ZnBTDPS, the Zn2+ sites adopt a tetrahedral geometry. Finally, the four compounds formed two-dimensional sheets that are connected to each other through hydrogen bonding giving rise to three-dimensional supramolecular arrays.  相似文献   

15.
Compounds FeIII(3-CH3O-qsal)2PF6 · nH2O (n = 0, 2) (1, 1 · 2H2O) were synthesized and characterized: the structure of 1 and the magnetic properties of both compounds were determined. Compound 1 · 2H2O presents properties characteristic of high-spin Fe(III), while 1 presents properties of low-spin Fe(III) with an onset of a gradual spin crossover at ca. 300 K.  相似文献   

16.
This work presents a systematic investigation on coordination chemistry of a novel pyridine-2,6-dicarboxylic acid N-oxide (pydco), and also reveals the significant function of supramolecular interactions in dominating the resultant crystalline nets. Assemblies of pydco with transition-metal ions under similar conditions yield a series of polymers in the absence/presence of the organonitrogen ligands {[Cu(pydco)(L)0.5(H2O)] · 2H2O}n (L = bipy (1), bpa (2) and bpe (3)), {[M(pydco)(bpp)(H2O)] · 2H2O}n (M = Cu (4) and Ni (5)), [Ag2(pydco)]n (6) and [Ag2Cu(pydco)2]n (7) (bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane). 1-5 feature different structural characteristics, although they exhibit analogous chain networks. Remarkably, extended architectures are further constructed with the aid of weak interactions. Reaction of pydco with AgAc yields a 2-D polymer 6, which was reported in our recent Communication. A mixed-metal coordination polymer 7 was obtained by the self-assembly of AgAc, Cu(Ac)2 · H2O and pydco.In 7, two left- and right-hand helical chains are constructed by carboxylic groups of pydco and Cu centers, which are further connected by [AgCO2]2 cores into a 2-D network. Structural evolution under the co-ligand intervention in this series of compounds, as well as the general coordination rule of pydco, has been further discussed. Furthermore, variable temperature magnetic properties of 1, 3 and 7 are also studied. The magnetic measurements of 1 and 3 reveal the existence of weak antiferromagnetic interactions with J1 = −4.59 cm−1 and J2 = −4.63 cm−1, respectively. Whereas 7 displays weak ferromagnetic interactions with J3 = 1.81 cm−1.  相似文献   

17.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

18.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

19.
Two new coordination polymers {[Mn(H2btc)(phen)(H2O)2]H2btc · H2O}n (1) [H3btc = 1,3,5-benzene tricarboxylic acid, phen = phenanthroline] and {[Zn3(btc)2(H2O)8](H2O)4}n (2) have been synthesised and structurally characterised. Both the complexes crystallise as 1D chain, which further propagates through ligand-based hydrogen bonding interactions into a 3D supramolecular architecture. Supramolecular framework of 1 is constructed by [Mn(H2btc)(phen)(H2O)2]+ as well as the constituent materials-uncoordinated H2btc and water molecules. Complex 2 exists as a corrugated chain with both the bridging and terminal Zn2+ ions and each zinc centre is coordinated to four water molecules. Both 1 and 2 are stacked by mutual π-stacking of the ligands and exhibit strong fluorescence emission band at 414 and 400 nm, respectively.  相似文献   

20.
Three new homopolynuclear complexes with azido bridges have been obtained by using [Cu(AA)(BB)]+ building-blocks (AA = acetylacetonate; BB = 1,10-phenanthroline or 2,2′-bipyridine). The reaction between [Cu(acac)(phen)(H2O)](ClO4) and NaN3 leads to a mixture of two compounds: a binuclear complex, [{Cu(acac)(phen)}21,3-N3)](ClO4) · 2H2O (1), and a linear tetranuclear one, [{Cu(acac)(phen)(ClO4)}2{Cu(phen)(μ1,1-N3)2}2] (2). The reaction between [Cu(acac)(bipy)(H2O)](ClO4) and NaN3 affords also a mixture of two compounds: [{Cu(acac)(bipy)}21,3-N3)]3(ClO4)3 · 3.75H2O (3) and [Cu(acac)(bipy)(N3)][Cu(acac)(bipy)(H2O)](ClO4) (4). The X-ray crystal structures of compounds 1-4 have been solved (for compound 4 the crystal structure was previously reported). In compounds 1 and 3, two {Cu(AA)(BB)} fragments are bridged by the azido anion in an end-to-end fashion. Two isomers, cis and trans with respect to azido bridge, were found in crystal 3. The structure of compound 2 consists of two Cu(II) central cations bridged by two μ1,1-azido ligands, each of them being also connected to a {Cu(acac)(phen)} fragment through another μ1,1-azido ligand. The cryomagnetic properties of the compounds 1 and 2 have been investigated and discussed. The magnetic behaviour of compound 1 shows the absence of any interactions between the metallic ions. In the tetranuclear complex 2, the magnetic interactions between the external and central copper(II) ions(J1), and between the central metallic ions (J2) were found ferromagnetic (J1 = 0.36 cm−1, J2 = 7.20 cm−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号