首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new nickel(II) complexes of the composition [Ni(cyclam)(Hdipic)2] · 2H2O (1) and [Ni(cyclam)(H2O)2][Ni(dipic)2] · 2.5H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been prepared and structurally characterized by a combination of analytical, spectroscopic, thermogravimetric, and crystallographic methods. The structure of 1 shows that the central nickel(II) ion is coordinated axially by two monodentate Hdipic ligands. The discrete neutral complex 1 further extends its structure by hydrogen bonding interactions to form a one-dimensional supramolecule. The structure of 2 consists of two independent nickel(II) centers. Water molecules instead of dipic ligands prefer to coordinate to the Ni1 ion forming a divalent cation [Ni(cyclam)(H2O)2]2+. Two dipic ligands coordinate to the second Ni2 ion forming a divalent anion [Ni(dipic)2]2−. The divalent cations and anions are charge-balanced, resulting in a molecular salt. The divalent cations and anions are interconnected by multiple types of hydrogen bonding interactions.  相似文献   

2.
The crystallization of 2,3-dihydro-thieno[3,4-b][1,4] dioxine-5,7-dicarboxylic acid (H2tddc) with divalent transitional metal (Co, Ni, Zn, Cd) or with tervalent lanthanide metal (Sm) and with mixed ligand 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (1,10-phen) formed six new complexes: [Co(C8H4O6S) · 3H2O] (1), [Co(C8H4O6)(1,10-phen)(H2O)] · H2O (2), [Ni(C8H4O6S)(4,4′-bipy)(H2O)] · 3H2O (3) [Sm(C8H4O6S)(NO3)(H2O)4] · 2H2O (4), [Zn(C8H4O6S)(H2O)3] (5), and [Cd2(C8H4O6S)2(4,4′-bipy)2] (6). The structures of these six crystals have been characterized by single-crystal X-ray diffraction analyses, which revealed that complexes 1, 4, 5 are all one-dimensional chain structures and they self-assemble into three-dimensional super-molecules via the hydrogen bond interactions and π-π stacking interactions, 2 is also a one-dimensional chain structure but still self-assembles into one-dimensional double-chains, the complex 3 has two-dimensional undulating parallelogram grid structure extended along the bc-plane, the crystal of 6 is a 3D threefold interpenetration topology framework with 46638 nodes. The photoluminescent properties of the H2tddc ligand and the six compounds have been measured in the solid state at room temperature. Free ligand has no luminescence, while its complexes 1, 4, and 6 all exhibit intense photoluminescence which implies that these complexes may be excellent candidates for potential photoactive materials.  相似文献   

3.
Self-assembling [Fe(CN)5(NO)]2− and [M(L)]2+ (M = Ni, Cu; L = macrocycles) led to one-dimensional coordination polymers, [Ni(L1)][Fe(CN)5(NO)] · 2H2O (1) with parallel chains and [Cu(L2)][Fe(CN)5(NO)] · 3H2O (2) exhibiting a slanted chain structure. Compound 1 contains a planar macrocycle L1 coordinated to a slightly distorted octahedral Ni(II) ion in which the planarity of L1 gives rise to piling up chains in parallel. In contrast, a more flexible macrocyclic ligand L2 in 2 that surrounds a Cu center with a tetragonal elongation has bulky cyclohexyl groups together with pendant methyl side groups. The presence of the methyl groups on L2 in a chain makes the cyclohexyl groups in an adjacent chain tilted against the CuN4 basal plane with the methyl groups, eventually resulting in the slanted chain structure. Magnetic data demonstrate that antiferromagnetic interactions (J ≈ −0.13 cm−1) are operating although the paramagnetic centers are linked by the long diamagnetic [Fe(CN)5(NO)]2− anion.  相似文献   

4.
A product isolated from a reaction mixture of Br2 and Ph3 Sn(CH2)13CH3 (3:1 mole ratio) in CHCl3 solution in air was bis{di-μ-hydroxobis[fac-tribromoaquotin(IV)]} heptahydrate, 2[Br3 (H2O)Sn(μ-OH)2 Sn(O2H)Br3] · 7H2O, 2[fac-(1: X = Br)] · 7H2O. Previous reports had indicated that the tin complexes, [fac-(1: X = Cl or Br)], had been obtained in various solvated forms from hydrolysis or oxidation/hydrolysis of appropriate tin(IV) or tin(II) halides. The crystal structure determination, reported here, provides an improved refinement of the core, i.e., [fac-(1: X = Br)], of 2[fac-(1: X = Br)] · 7H2O compared to previous attempts. The solid state structure consists of a central rhomboidal planar Sn2O2 ring. The tin centres have distorted octahedral geometries, with each Br ligand trans to an O atom. The Br ligands, trans to the aqua ligands, form longer bonds to tin at 2.5556(7) and 2.5544(6) Å, than those trans to the bridging OH ligands, between 2.5021(7) and 2.5127(7) Å. The Br, OH and H2O ligands as well as the solvate water molecules are all involved in an extensive hydrogen bonding system in 2[fac-(1: X = Br)] · 7H2O.  相似文献   

5.
《Inorganica chimica acta》2004,357(5):1444-1456
The complexes cis-[PdCl22-[C(H)PH3]2CO}] (2) in two different stereochemical arrangements (cisoid-cisoid, 2cc; cisoid-transoid, 2ct) have been studied by DFT methods at the B3LYP level. The (2cc) structure is energetically more stable than the (2ct), being the main responsible of the energy difference between the two complexes the energetic gap between the cc and ct isomers of the free bis-ylide ligand [H3PC(H)-C(O)-C(H)PH3] (1). In (1) these differences arise from the presence of 1,4-intramolecular interactions between the phosphorus atoms and the carbonyl oxygen. That is, the conformational preferences observed in (1) due to the establishment of 1,4-P?O interactions are directly transferred to the metallic complexes (2) in such a way that the most stable structure for the free ligand gives the most stable complex. In the absence of the carbonyl group (e.g. [H3PC(H)-C(CH2)-C(H)PH3] (3) or [H3PC(H)-CH2-C(H)PH3] (5)) all isomers of a given bis-ylide (cc, ct and tt) become isoenergetic. The absence of discrimination in the free bis-ylides (3) and (5) gives isoenergetic cc and ct structures for the corresponding complexes cis-[PdCl22-[C(H)PH3]2CCH2}] (4), cis-[PdCl22-[C(H)PH3]2CH2}] (6) and [CpNi{η2-[C(H)PH3]2CH2}] (7), as stated by NMR spectroscopy for (7). The influence of other factors (change of the heteroatom at Cβ, change of the P substituents) in the energy of the different isomers of the bis-ylides and in the energy of the corresponding complexes has also been studied and discussed.  相似文献   

6.
The reactions of methyl 2-pyridyl ketone oxime, (py)C(Me)NOH, with MSO4 · xH2O (M = Zn, x = 7; M = Cd, x = 8/3), in the absence of an external base, have been investigated. The synthetic study has led to the two new complexes [Zn(SO4){(py)C(Me)NOH}(H2O)3] · H2O (1 · H2O) and [Zn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH [2 · (py)C(Me)NOH], and the coordination polymer [Cd(SO4){(py)C(Me)NOH}(H2O)]n · [Cd(SO4){(py)C(Me)NOH}(H2O)2]n (3). In the three complexes the organic ligand chelates through its nitrogen atoms. The sulfate anion in 1 · H2O is monodentate; the complex molecule is the mer isomer considering the positions of the aqua ligands. The ZnII centers in 2 · (py)C(Me)NOH are bridged by two syn, anti η112 ligands; each metal ion has the cis-cis-trans disposition of the coordinated sulfate oxygen, pyridyl nitrogen and oxime nitrogens, respectively. The molecular structure of 3 is unique consisting of two different linear and ladder - type chains. π-π stacking interactions and/or hydrogen bonds lead to the formation of interesting supramolecular architectures in the three complexes. The thermal decomposition of complex 3 has been studied. Characteristic vibrational (IR, Raman) bands are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

7.
Two novel 1D complexes, [Ni(hto){Au(CN)2}2][Ni(hto)](ClO4)2 · 4H2O (hto = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]octadecane, in Scheme 1.) (1) and [Co(dien)2][{Au(CN)2}3] · 2H2O (dien = diethylenetriamine) (2) have been synthesized and characterized. The crystal structure of 1 confirmed the presence of nickel (II) chains via Au-Au interactions. The coordination geometry around the six-coordinate nickel (II) ion is slightly distorted octahedral with four nitrogen atoms of the macrocycle and two nitrogen atoms of the cyanides. The presence of Au-Au interactions have effectively increased the zero dimensional coordination polymer to a one dimensional system. In the complex 2, there are one cation, three anions, and two water molecules in the asymmetric unit. These components are interconnected through a combination of aurophilic attractions and hydrogen bonds and formed 1D chains.  相似文献   

8.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

9.
Two complexes of gold of the compositions [Au(DMG)ClPy] (1) and [AuCl2Py2][AuCl4] · 2[AuCl3Py] (2), where H2DMG was dimethylglyoxime, were synthesized as the products of interaction of H[AuCl4] · 4H2O with H2DMG in the presence of pyridine and characterized by X-ray structural analysis. It was shown that depending on the synthetic conditions, the final product represents a molecular complex 1 or an ionic complex 2, in the latter one the charged and neutral species being combined via Au?Cl or Au?Au interactions.  相似文献   

10.
Reaction of bis(2-{pyrid-2-yl}ethyl)amine with 2-bromoethanol in the presence of Na2CO3 yields the title ligand, LH. Treatment of LH with the CuBr2 or Zn(O2CMe)2 · 2H2O yields pure crystalline [CuBr(LH)]Br · H2O (1 · H2O) and [Zn2(O2CMe)2(μ-O2CMe)(μ-L)] (2). Reaction of LH with Cu(O2CMe)2 · H2O affords a low yield of [Cu2Cl2(μ-O2CMe)(μ-L)] (3), the Cl ligands apparently originating from the CH2Cl2 crystallization solvent. Compound 1 · H2O is a near-regular square-pyramidal complex with a neutral, protonated LH ligand. In contrast, 2 and 3 are both unusual unsymmetric dinuclear complexes, with a five-coordinate [ML(O2CMe)] (M = Zn or Cu) unit linked to a second metal ion through the deprotonated ligand alkoxide donor and O,O′-bridging acetate ligand.  相似文献   

11.
The synthesis of the X-ray structurally characterized square-planar [Ni(2,2,3-tet)](ClO4)2 (2) from the [Ni(2,2,3-tet)(NH3)(H2O)]Cl2 · 1/2EtOH · H2O (1), was based on their inter-conversion. The two sets of trans Ni-N bonds display similar to each other lengths (1.900 & 1.910 and 1.996 & 1.966 Å). The relaxation times (T1,2) of water protons and NMR experiments indicate relatively slow octahedral-sq-planar equilibrium, while in the aqueous solutions of 1, the sq-planar species appear to display a structure analogous to 2 in solution. The square planar geometry, the hydrophilicity of the complex and the asymmetry of the ligand generate the conditions for catalytic site formation.  相似文献   

12.
New heterodinuclear ZnII/NiII (1) and homodinuclear NiII/NiII (2) water-soluble and air stable compounds of general formula [M(H2O)6][M′(dipic)2] · mH2O have been easily prepared by self-assembly of the corresponding metal(II) nitrates with dipicolinic acid (H2dipic) in water solution at room temperature.  The compounds have been characterized by IR, UV/Vis and atomic absorption spectroscopies, elemental and X-ray single crystal diffraction (for 1 · 4H2O and 2 · 5H2O) analyses.  3D infinite polymeric networks are formed via extensive hydrogen bonding interactions involving all coordinated and crystallization water molecules, and all dipicolinate oxygens, thus contributing to additional stabilization of dimeric units, metal-organic chains and 2D layers.  In 1 · 4H2O, the latter represent a rectangular-grid 2D framework with multiple channels if viewed along the c crystallographic axis, while in 2 · 5H2O intercalated crystallization water molecules are associated to form acyclic nonplanar hexameric water clusters and water dimers which occupy voids in the host metal-organic matrix, with a structure stabilizing effect via host-guest interactions.  The hexameric cluster extends to the larger (H2O)10 one with an unusual geometry (acyclic helical octamer with two pendent water molecules) by taking into account the hydrogen bonds to water ligands in [Ni(H2O)6]2+.  The obtained Zn/Ni compound 1 relates to the recently reported family of heterodimetallic complexes [M(H2O)5M′(dipic)2] · mH2O (M/M′ = Cu/Co, Cu/Ni, Cu/Zn, Zn/Co, Ni/Co, m = 2, 3), what now allows to establish the orders of the metal affinity towards the formation of chelates with dipicolinic acid (CoII > NiII > ZnII > CuII) or aqua species (CoII < NiII < ZnII < CuII).  相似文献   

13.
The first employment of pyridine-2-amidoxime [(py)C(NH2)NOH] in zinc(II) chemistry is reported. The syntheses, crystal structures, and spectroscopic characterization are described for complexes [Zn(O2CR)2{(py)C(NH2)NOH}2] (R = Me; 1, Ph; 2), [Zn2(acac)2{(py)C(NH2)NO}2] (3), and [Zn(NO3){(py)C(NH2)NOH}2](NO3) (4). The reactions between Zn(O2CR)2·2H2O (R = Me, Ph) or Zn(NO3)2·5H2O and two equivalents of (py)C(NH2)NOH in MeOH led to mononuclear compounds 1, 2 and 4, respectively. All three complexes contain two neutral N,N′-chelating (η2) (py)C(NH2)NOH ligands, coordinated through the Npyridyl and Noxime atoms. In contrast, the use of Zn(acac)2·H2O in place of Zn(O2CR)2·2H2O gives the dinuclear compound 3, which instead contains the anionic, η111:μ bridging form of the organic ligand; the ZnII atoms are doubly bridged by the diatomic oximate groups of the (py)C(NH2)NO groups. Strong intra- and intermolecular hydrogen bonding interactions provide appreciable thermodynamic stability and interesting supramolecular chemistry for compounds 1-4. The photoluminescence properties of complexes 1-4 recorded in the solid state at room temperature are also presented.  相似文献   

14.
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)2·6H2O with N-(4-carboxyphenyl)iminodiacetic acid [N-4(H3CPIDA)] at 150 °C yielded a 3D coordination polymer of general formula [Ni3{N-4(CPIDA)}2(H2O)3]·6H2O (1). An analogous network of general formula [Co3{N-3(CPIDA)}2(H2O)3]·3H2O (2) was synthesized using N-(3-carboxyphenyl)iminodiacetic acid [N-3(H3CPIDA)] in combination with Co(NO3)2·6H2O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P21/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2.  相似文献   

15.
Four novel metal coordination polymers, [Cd(dpa)(H2O)]n (1), [Cd(dpa)(2,2′-bipy)]n (2), {[Cd2(dpa)2(4,4′-bipy)3](4,4′-bipy)(H2O)2}n (3) and [Cd(dpa)(bim)2(H2O)]}n (4) (H2dpa = 2,4′-biphenyl-dicarboxylic acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine, bim = benzimidazole), have been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single-crystal X-ray analyses reveal that the 2,4′-diphenic acids acts as bridging ligands, exhibiting rich coordination modes to link metal ions: bis-monodentate, bidentate chelating, chelating/bridging, monoatomic bridging and monodentate modes. In addition, the luminescent properties for compound 1-4 are also investigated in this work.  相似文献   

16.
Two novel cadmium(II) coordination polymers [Cd(pyip)(ox)]·H2O (1) and [Cd2(pyip)2(ox)2·(H2O)][Cd(pyip)(ox)]·4(H2O) (2) (pyip = 2-(pyridin-3-yl-1H-imidazo [4,5-f][1,10]phenanthroline, H2ox = oxalic acid), have been hydrothermal synthesized and characterized by single crystal X-ray diffraction. Compound 1 is 1D zigzag chain, in which oxalate anion as bridging ligand is responsible for the formation of the main framework and pyip as chelating ligand grafts on two sides of the zigzag chain. Compound 2 contains two kinds of independent polymers [Cd2(pyip)2(ox)2(H2O)] (A) and [Cd(pyip)(ox)] (B) to form an interdigitated 1D + 1D structure, in which polymers A and B are paratactically assembled in an ABCD sequence. The fundamental unit of polymer B in 2 is the same as that in 1. For compounds 1-2, weak interactions, primarily hydrogen bonding and π?π stacking interactions, have greatly influence on the supramolecular motifs recognized in the crystal packing. Especially, the oxalate anions as bridging ligand simultaneously adopt multiform coordination modes in two compounds. In addition, 1 and 2 displayed a strong fluorescent emission in the solid state at room temperature.  相似文献   

17.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

18.
The synthesis and X-ray crystal structures of u-fac-[Ni(dien)2](NO3)2, s-fac-[Ni(dien)2](tos)2, fac-fac-[(H2O)(dien)Ni(μ-Cl)2(dien)(H2O)]Cl2, s-fac-[Ni(dien)2][ZnCl4], mer-[Ni(dien)2][CdCl4] · H2O, fac-[Ni(dien)(H2O)3](tos)2 · (H2O), mer-[Cu(dien)(H2O)](tos)2, fac-[Zn(dien)(H2O)2](tos)2 (dien = bis(2-aminoethyl)amine = diethylenetriamine; tos = p-toluenesulfonate) are described. The mode of binding of the tridentate amine is examined in detail.  相似文献   

19.
Three complexes of composition [Co3(Hdcp)2(phen)3(H2O)2]n · nH2O (1), [Ni2(Hdcp)2(H2O)4](Im)2 (2) and [Cu2(Hpca)2(H2O)2(Im)2] (3) (H3dcp = 3,5-pyrazoledicarboxylic acid, H2pca = 1H-pyrazole-5-carboxylic acid, Im = imidazole and phen = 1,10-phenanthroline) have been synthesized via hydrothermal reactions and their structures have been characterized. Complex 1 is mainly constructed by Hdcp and ancillary ligand 1,10-phenanthroline and exhibits one-dimensional linear chain structure. Complexes 2 and 3 are pyrazolato-bridged dinuclear complexes. The ancillary imidazole ligand was not involved in the coordination and stacked to the lattice of the complex in 2. In the process of synthesis 3, imidazole ligand was coordinated to the metal centre; with one of the carboxylic group of the H3dcp ligand was eliminated to form [Cu2(Hpca)2(H2O)2(Im)2] (3) in situ. The results of magnetic susceptibility measurements indicate that there exist antiferromagnetic interactions between Co(II) and Ni(II) centres in compounds 1 and 2, respectively.  相似文献   

20.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号