首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cis,trans-Fe(CO)2(PMe3)2(p-Y-C6H4)X [X=Br, Y=H (4a), MeO (4b), Cl (4c), F (4d), Me (4e); X=I, Y=H (5); X=Cl, Y=H (6)] and cis,trans-Fe(CO)2(PMe3)2(σ-CHCH2)X [X=Br (7); X=I (8); X=Cl (9)] are prepared by reacting dihalide complexes cis,trans,cis- Fe(CO)2(PMe3)2X2 [X=Br (1), X=I (2), X=Cl (3)] with Grignard reagents p-Y-C6H4-MgBr (Y=H, OMe, Cl, F, Me) or CH2CH-MgBr and with lithium reagents PhLi, CH2CH-Li. With both reagents, the reaction proceeds following two parallel pathways: one is the metallation reaction which yields alkyl derivatives, the other affords 17 electron complexes [Fe(CO)2(PMe3)2X] via monoelectron reductive elimination. The influence of the halides and organometallic reagents on the yield of the metallation reaction is discussed. The solution structure of the complexes is assigned on the basis of IR and 1H, 13C, 19F, 31P NMR spectra. The solid state structure of complexes 4a, 5 and 6 is determined by single crystal X-ray diffractometric methods.  相似文献   

2.
The complexes [Ru{(Z)-HCCHPh}(CO)25-C5Ph5)] (1) and [Ru{(Z)-HCCHC6H4NO2}(CO)25-C5Ph5)] (2) have been synthesized and their identity confirmed by single-crystal X-ray diffraction studies. Reaction of 2 with PMe2Ph and Me3NO in tetrahydrofuran afforded [Ru{(Z)-HCCHC6H4NO2}(CO)(PMe2Ph)(η5-C5Ph5)] (3). Cyclic voltammetry confirms the expected increase in ease of oxidation on proceeding from 2 to 1 and from 2 to 3. Hyper-Rayleigh scattering studies at 1064 nm reveal a dramatic increase in quadratic non-linearity on co-ligand replacement of CO by PMe2Ph, in proceeding from 2 to 3. Z-scan studies at 800 nm are consistent with significant contribution from two-photon states, and with an increase in γreal on co-ligand replacement of CO by PMe2Ph in proceeding from 2 to 3.  相似文献   

3.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

4.
Complexes cis,trans-Fe(CO)2(PMe3)2RR′ (R = CH3, R′ = Ph (2); R = CH3, R′ = CHCH2 (3); R = CHCH2, R′ = Ph (4); R = R′ = CHCH2 (5); R = R′ = CH3 (6)) were prepared by reaction of cis,trans-Fe(CO)2(PMe3)2RCl (1) with organolithium reagents LiR′. All complexes were characterized in solution by IR and 1H, 31P and, in a few cases, 13C NMR mono- and bi-dimensional spectroscopies. Complexes 5 and 6 were structurally characterized by X-ray diffractometric methods. In solution complexes 2, 3 and 4 undergo slowly coupling of the σ-hydrocarbyl substituents leading to Fe(CO)3(PMe3)2 and other decomposition products. Complex 6 was very stable in solution in the absence of nucleophiles and in the solid state. Complex 5 transformed through intramolecular coupling of the vinyl groups into Fe(CO)(PMe3)24-butadiene) (7), which was characterized in solution by IR and NMR spectroscopies.  相似文献   

5.
Phosphorus-carbon bond is formed via: (i) the apparent HCCH insertion into Ir-P bond to produce Ir-CHCH-PPh3 group and (ii) the activation of the ring-methyl group of the coordinated Cp* (C5Me5 −) to produce Ir(η5-C5Me4CH2-PPh3) group from reactions of iridium(III)-Cp* complexes, [Cp*IrL3]n+ (n=1, 2); Cp*=C5Me5 −; L3=Cl(PPh3)2 (3), (CH3CN)3 (5). The following new P-C bond containing iridium(III) complexes have been prepared: [Cp*Ir(-CHCH-PPh3)Cl(PPh3)]+ (4) from 3 with HCCH; [Ir(η5-C5Me4CH2-PPh3)(H)(PPh3)2]2+ (6) from 5 with PPh3; [Cp*Ir(-CHCH-PPh3)2(PPh3)]2+ (7) from 5 with HCCH and PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)Cl(PPh3)]2+ (8) from [Ir(η5-C5Me4CH2-PPh3)(Cl)(PPh3)2]2+ (6-Cl) with HCCH; [Ir(η5-C5Me3(1,3-CH2-PPh3)2(H)(PPh3)2)]3+ (10) from [Ir(η5-C5Me4CH2-PPh3)(NCCH3)2(PPh3)]3+ (9) with PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)2(PPh3)]3+ (11) from 9 with HCCH and PPh3.  相似文献   

6.
New phosphorus ligands of the type (SPPh2)(O2SR)NH [R=Me (1), C6H4Me-4 (2)] were prepared as white crystalline solids using the reactions between Li[HN(S)PPh2] and RSO2Cl. They were easily converted into their alkali metal salts, M[(SPPh2)(O2SR)N] (M=Li, Na, K). Both the free acids and their alkali metal salts were characterised by multinuclear (1H, 13C, 31P) NMR spectroscopy. The molecular structures of the free acids were established by single crystal X-ray diffraction. They crystallize in the tetragonal space group I41/a (1) and the triclinic space group P−1 (2), respectively. In both compounds the acidic proton is attached to nitrogen and the molecular units are associated through SO?H-N intermolecular hydrogen bonding [H?O 2.216 in 1 and 2.029 Å in 2]. A supramolecular chain-like structure is formed in 1 and dimeric units are built in 2. For both compounds a conformation close to syn-syn can be considered for the SP(C)2-N-SC(O)2 fragment.  相似文献   

7.
The [RhCl3(N-N)(DMSO)] complexes, the N-N being 2,2′-bipyridine (1), 1,10-phenanthroline (2), 4,7-diphenyl-1,10-phenanthroline (3), 4,4′-dimethyl-2,2′-bipyridine (4) and 1,10-phenanthroline-5,6-dione (5), have been synthesized and characterized with spectroscopic methods. The compounds 2-5 adopt mer- and complex 1fac-structure. The molecular and electronic structure studies of mer- and fac-complexes with bpy and phen ligands at the DFT B3LYP level with 3-21G∗∗ basis set showed that mer-isomers are more stable. The cytostatic activity of the [RhCl3(N-N)(DMSO)] complexes against Caco-2 and A549 tumor cells have been studied. Their antibacterial activity have also been investigated. It has been found that the very promising biological activity show complexes 2, 3 and 4.  相似文献   

8.
Refluxing WCl4(PMe3)3 under a nitrogen atmosphere in the presence of two equivalents of sodium amalgam leads to a reduction to the W(II) complex [cis,mer-WCl2(PMe3)3]2N2 (1), which can be converted to [mer,trans-WCl3(PMe3)2]2N2 (2) via appropriate oxidation/chlorination. Structural data have been obtained for both complexes, and demonstrate significantly increased steric crowding in 1 due to PMe3/PMe3 interactions. The N-N bond distances in the two compounds are similar, at 1.279(4) and 1.243(18) Å, respectively.  相似文献   

9.
Copper(II) coordination complexes of the neutral ligand, tris(3-tert-butyl-5-methyl-1-pyrazolyl)methane (L2′), i.e. the copper(II) nitrato complexes [Cu(L2′)(NO3)][Cu(NO3)4]1/2 (1) and [Cu(L2′)(NO3)](ClO4) (2) and the copper(II) chloro complex [Cu(L2′)(Cl)](ClO4) (3), and its anionic borate analogue, hydrotris(3-tert-butyl-5-methyl-1-pyrazolyl)borate (L2), i.e. the copper(II) nitrato complex [Cu(L2)(NO3)] (4) and the copper(II) chloro complex [Cu(L2)(Cl)] (5), were synthesized in order to investigate the influence of ligand framework and charge on their structure and physicochemical properties. While X-ray crystallography did not show any definitive trends in terms of copper(II) atom geometry in four-coordinate copper(II) chloro complexes 3 and 5, different structural trends were observed in five-coordinate copper(II) nitrato complexes 1, 2, and 4. These complexes were also characterized by spectroscopic techniques, namely, UV-Vis, ESR, IR/far-IR, and X-ray absorption spectroscopy.  相似文献   

10.
The synthesis of palladacyclopentadiene derivatives with the mixed-donor bidentate ligands o-Ph2PC6H4CHNR (NP) has been achieved. The new complexes of general formula [Pd{C4(COOMe)4}(o-Ph2PC6H4CHNR)] [R=Me (1), Et (2), iPr (3), tBu (4), NHMe (5)] have been prepared by reaction between the precursor [Pd{C4(COOMe)4}]n and the corresponding iminophosphine. The polymer complex [Pd{C4(COOMe)4}]n also reacts with pyridazine (C4H4N2) to give the insoluble dinuclear complex [Pd{C4(COOMe)4}(μ-C4H4N2)]2 (6), which has been successfully employed as precursor in the synthesis of pyridazine-based palladacyclopentadiene complexes. The reaction of 6 with tertiary phosphines yielded complexes containing an N,P-donor setting of formula [Pd{C4(COOMe)4}(C4H4N2)(L)] (L=PPh3 (7), PPh2Me (8), P(p-MeOC6H4)3 (9), P(p-FC6H4)3 (10)). The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, 1H, 19F and 31P NMR). The molecular structure of complex 3 has been determined by a single-crystal diffraction study, showing that the iminophosphine acts as chelating ligand with coordination around the palladium atom slightly distorted from the square-planar geometry.  相似文献   

11.
Reaction of 4,4′-di(3-pyridyl-4-pyrimidinyl) disulfide (3-PPDS) with AgNO3 leads to a unique 2D extended structure {[Ag(3-PPDS)(NO3)]}n (1) based on [Ag2(3-PPDS)2] macrocycle units, of which 1D inorganic [Ag(NO3)]n helical chains are generated. By contrast, definite Ag-S bonding interactions associated with the disulfide function have been established in {[Ag(2-PPDS)]ClO4}n (2), which is assembled of 4,4′-di(2-pyridyl-4-pyrimidinyl) disulfide (2-PPDS) with AgClO4. Solid state luminescent properties of complexes 1 and 2 are also examined.  相似文献   

12.
Four new ligands containing a pyridine or thiazole group and one or more N-(diphenylphosphinomethyl)amine functions have been prepared and employed for the synthesis of Mo(0) and W(0) carbonyl and dinitrogen complexes. For comparison coordination of the literature-known ligand N,N-bis(diphenylphosphinomethyl)-methylamine (PNP, 1) to such systems has been investigated as well. Two new ligands are N,N-bis(diphenylphosphinomethyl)-2-aminopyridine (pyNP2, 2) and N,N′-bis(diphenylphosphinomethyl)-2,6-diaminopyridine (PpyP, 3). In a third new ligand, N-diphenylphosphinomethyl-2-aminothiazole (thiazNP, 4), the pyridine group is replaced by thiazol. Finally, the pentadentate ligand N,N,N′,N′-tetrakis(diphenylphosphinomethyl)-2,6-diaminopyridine (pyN2P4, 5) has been synthesized. Coordination of ligands 2, 3 and 4 to low-valent metal centers is investigated on the basis of the three molybdenum carbonyl complexes [Mo(CO)3(NCCH3)(pyNP2)] (6), [Mo(CO)4(PpyP)] (7) and [Mo(CO)4(thiazNP)] (8), respectively, all of which are structurally characterized. Moreover, employing ligands 1 and 2 the two dinitrogen complexes [W(N2)2(dppe)(PNP)] (9) and [Mo(N2)2(dppe)(pyNP2) (10), respectively, are prepared. Both systems are investigated by vibrational and NMR spectroscopy; in addition, complex 10 is structurally characterized.  相似文献   

13.
Addition of phenyldi(2-thienyl)phosphine (PPhTh2) to [Re2(CO)10−n(NCMe)n] (n = 1, 2) affords the substitution products [Re2(CO)10−n(PhPTh2)n] (1, 2) together with small amounts of fac-[ClRe(CO)3(PPhTh2)2] (3) (n = 2). Reaction of [Re2(CO)10] with PPhTh2 in refluxing xylene affords a mixture which includes 2, [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-H)] (4), [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-η11(S)-C4H3S)] (5) and mer-[HRe(CO)3(PPhTh2)2] (6). Phosphido-bridged 4 and 5 are formed by the carbon-phosphorus bond cleavage of the coordinated PPhTh2 ligand, the cleaved thienyl group being retained in the latter. Reaction of [Mn2(CO)10] with PPhTh2 in refluxing toluene affords [Mn2(CO)9(PPhTh2)] (7) and the carbon-phosphorus bond cleavage products [Mn2(CO)6(μ-PPhTh)(μ-η15-C4H3S)] (8) and [Mn2(CO)5(PPhTh2)(μ-PPhTh)(μ-η15-C4H3S)] (9). Both 8 and 9 contain a bridging thienyl ligand which is bonded to one manganese atom in a η5-fashion.  相似文献   

14.
《Inorganica chimica acta》2004,357(5):1444-1456
The complexes cis-[PdCl22-[C(H)PH3]2CO}] (2) in two different stereochemical arrangements (cisoid-cisoid, 2cc; cisoid-transoid, 2ct) have been studied by DFT methods at the B3LYP level. The (2cc) structure is energetically more stable than the (2ct), being the main responsible of the energy difference between the two complexes the energetic gap between the cc and ct isomers of the free bis-ylide ligand [H3PC(H)-C(O)-C(H)PH3] (1). In (1) these differences arise from the presence of 1,4-intramolecular interactions between the phosphorus atoms and the carbonyl oxygen. That is, the conformational preferences observed in (1) due to the establishment of 1,4-P?O interactions are directly transferred to the metallic complexes (2) in such a way that the most stable structure for the free ligand gives the most stable complex. In the absence of the carbonyl group (e.g. [H3PC(H)-C(CH2)-C(H)PH3] (3) or [H3PC(H)-CH2-C(H)PH3] (5)) all isomers of a given bis-ylide (cc, ct and tt) become isoenergetic. The absence of discrimination in the free bis-ylides (3) and (5) gives isoenergetic cc and ct structures for the corresponding complexes cis-[PdCl22-[C(H)PH3]2CCH2}] (4), cis-[PdCl22-[C(H)PH3]2CH2}] (6) and [CpNi{η2-[C(H)PH3]2CH2}] (7), as stated by NMR spectroscopy for (7). The influence of other factors (change of the heteroatom at Cβ, change of the P substituents) in the energy of the different isomers of the bis-ylides and in the energy of the corresponding complexes has also been studied and discussed.  相似文献   

15.
A synthetic and mechanistic study is reported on ligand substitution and other reactions of six-coordinate ruthenium(II) carbonyl complexes containing tridentate PhP(CH2CH2CH2PCy2)2 (Cyttp). Carbonylation of cis-mer-Ru(OSO2CF3)2(CO)(Cyttp) (1) affords [cis-mer-Ru(OSO2CF3)(CO)2(Cyttp)]O3SCF3 (2(O3SCF3)) and, on longer reaction times, [cis-mer-Ru(solvent)(CO)2(Cyttp)](O3SCF3)2 (solvent = acetone, THF, methanol). 2(O3SCF3) reacts with each of NaF, LiCl, LiBr, NaI, and LiHBEt3 to yield [cis-mer-RuX(CO)2(Cyttp)]+ (X = F (3), Cl (4), Br (5), I (6), H (7)), isolated as 3-7(BPh4). These conversions proceed with high stereospecificity to afford only a single isomer of the product that is assigned a structure in which the Ph group of Cyttp points toward the CO trans to X (anti when X = F, Cl, Br, or I; syn when X = H). Treatment of 2(O3SCF3) with NaOMe and CO generates the methoxycarbonyl complex [cis-mer-Ru(CO2Me)(CO)2(Cyttp)]+ (8), whereas addition of excess n-BuLi to 2(O3SCF3) in THF under CO affords mer-Ru(CO)2(Cyttp) (9). The two 13C isotopomers [cis-mer-Ru(OSO2CF3)(CO)(13CO)(Cyttp)]O3SCF3 (2′(O3SCF3): 13CO trans to PC; 2″(O3SCF3): 13CO cis to all P donors) were synthesized by appropriate adaptations of known transformations and used in mechanistic studies of reactions with each of LiHBEt3, NaOMe/CO, and n-BuLi. Whereas LiHBEt3 reacts with 2′(O3SCF3) and 2″(O3SCF3) to replace triflate by hydride without any scrambling of the carbonyl ligands, the corresponding reactions of NaOMe-CO are more complex. The methoxide combines with the CO cis to triflate in 2, and the resultant methoxycarbonyl ligand ends up positioned trans to the incoming CO in 8. A mechanism is proposed for this transformation. Finally, treatment of either 2′(O3SCF3) or 2″(O3SCF3) with an excess of n-BuLi leads to the formation of the same two ruthenium(0) isomers of mer-Ru(CO)(13CO)(Cyttp). These products represent, to our knowledge, the first example of a syn-anti pair of isomers of a five-coordinate metal complex.  相似文献   

16.
Reaction of Fe2(CO)9 at room temperature in THF with the di-thiooxamides (L), SC{N(R,R′)}C{(R,R′)N}S [R=Me, R′-R′=(CH2)2 (a); R=H, R′=iPr (b); R=H, R′=iPr (c), R=H, R′=benzyl (d); R=H, R′=H (e)], results for ligands a-d initially in the formation of the mononuclear σ-S, σ-S′ chelate complexes Fe(CO)3(L) (7a-d), which could be isolated in case of 7a and 7d. Under the reaction conditions, complexes 7a-d react further with [Fe(CO)4] fragments to give three types of Fe2(CO)6(L) complexes (8a-d) in high yields, depending on the di-thiooxamide ligand used together with traces of the known complex S2Fe3(CO)9 (14). The molecular structures of these complexes have been established by the single crystal X-ray diffraction determinations of 8a, 8b and 8d. In the reaction with ligand e the corresponding complex 7e was not detected and the well-known complexes 14 and S2Fe3(CO)9 (15) were isolated in low yield. In situ prepared 7a reacts in a slow reaction with 1 equiv. of dimethyl acetylene dicarboxylate in a 1,3-dipolar cycloaddition reaction to give the stable initial ferra [2.2.1] bicyclic complex 10a in 60% yield. In complex 10a an additional Fe(CO)4 fragment is coordinated to the sulfido sulfur atom of the cycloadded FeSC fragment. When a toluene solution of 10a is heated to 50 °C it loses two terminal CO ligands to give the binuclear FeFe bonded complex 11a in almost quantitative yield. The molecular structures of 10a and 11a have been confirmed by single crystal X-ray diffraction. Reaction of 7d at room temperature with 2 equiv. of dimethyl acetylene dicarboxylate results in the mononuclear complex 12d in 5% yield. The molecular structure of 12b has been established by single crystal X-ray diffraction and comprises a tetra dentate ligand with two ferra-sulpha cyclobutene, and a ferra-disulpha cyclopentene moiety. When the reaction is performed at 60 °C a low yield of 2,3,4,5-thiophene tetramethyl tertracarboxylate is obtained besides complex 12d.  相似文献   

17.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

18.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

19.
Typically 2,2-diethylmalonate (dem) acts as a chelating ligand and binds to the metal in a η2 (dem-O, O′) mode. However, when cis,fac-[RuCl2(TMSO-S)4] is treated with K2(dem), it prefers to bind in an unusual bridging mode (μ-dem-O, O′) with the ruthenium (II) cation containing coordinated water, forming a strong hydrogen bond with the non-coordinated oxygen atoms of the 2,2-diethylmalonate ligand. The reaction products of cis,fac-[RuCl2(TMSO-S)4] (1) and cis,fac-[RuCl2(DMSO-S)3(DMSO-O)] (2) with dem are the dinuclear species with two bridging dem units, fac-[Ru(TMSO-S)3(H2O)(μ2-dem-O, O′)]2 (3) and fac-[Ru(DMSO-S)3(H2O)(μ2-dem-O, O′)]2 (4), respectively. The complex 3 was characterized by X-ray crystallography in which water ligands occupy anti positions with respect to each other. The NMR and X-ray study support each other with respect to dinuclear structure of 3 and 4, indicating that the dinuclear structure observed in the solid state is preserved in solution as well. The mononuclear anionic complex with chelating dem unit, K{fac-[RuCl(η2-dem-O, O′)(TMSO-S)3} (5), was also isolated from the reaction of 1 and K2(dem) demonstrating that 5 is an intermediate in the formation of 3.  相似文献   

20.
Treatment of the six-coordinate trimethylstannyl complex, Os(SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) with SnMe2Cl2 produces Os(SnMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (2), which in turn reacts readily with hydroxide ion to give, Os(SnMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (3). The osmastannol complex 3 undergoes a reaction with 2 equivalents of tBuLi, in which one of the phenyl rings of a triphenylphosphine ligand is “ortho-stannylated”, without cleavage of the Os-Sn bond, to give the cyclic complex, Os(κ2(Sn,P)-SnMe2C6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (4). This novel cyclic complex is selectively functionalised at the tin atom by reaction with SnMe2Cl2 which exchanges one methyl group for chloride giving the diastereomeric mixture, Os(κ2(Sn,P)-SnMeClC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (5a/5b). Crystal structure determination reveals that both diastereomers occur in the unit cell. The mixture, 5a/5b, undergoes reaction with hydroxide ion to give the diastereomeric osmastannol complexes, Os(κ2(Sn,P)-SnMeOHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (6a/6b) and with sodium borohydride to give the corresponding tin-hydride mixture, Os(κ2(Sn,P)-SnMeHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (7a/7b). Crystal structure determinations for 2, 4, and 5a/5b have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号