首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new metal-organic materials, In(2,2′-bipy)(btec)0.5Cl (1) and In2(phen)4(Hbtec)2 (2) (btec = 1,2,4,5-benzenetetracarboxylate, 2,2′-bipy = 2,2′-bipyridyl, phen = 1,10-phenanthroline) have been synthesized under mild hydrothermal condition. Their structures were determined by single-crystal X-ray diffraction and further characterized by X-ray powder diffraction, thermogravimetric analysis, IR, fluorescence spectroscopy, inductively coupled plasma (ICP) and elemental analysis. The structural analysis reveals that compound 1 exhibits a novel wavelike 2D layer with unusual contorted rhombic grids, while compound 2 possesses dinuclear In2(phen)4(Hbtec)2 complex molecules. It is noteworthy that their structures finally extend to the higher dimensional supramolecular framework structures through the π-π stacking interactions of N-donor ligands. Additionally, these two compounds show strong fluorescence in the solid state at room temperature.  相似文献   

2.
The preparation, crystal structures and magnetic properties of three copper(II) compounds of formulae [Cu2(dmphen)2(dca)4] (1), [Cu(dmphen)(dca)(NO3)]n (2) and [Cu(4,4-dmbpy)(H2O)(dca)2] (3) (dmphen=2,9-dimethyl-1,10-phenanthroline, dca=dicyanamide and 4,4-dmbpy=4,4-dimethyl-2,2-bipyridine) are reported. The structure of 1 consists of discrete copper(II) dinuclear units with double end-to-end dca bridges whereas that of 2 is made up of neutral uniform copper(II) chains with a single symmetrical end-to-end dca bridge. Each copper atom in 1 and 2 is in a distorted square pyramidal environment: two (1) or one (2) nitrile-nitrogen atoms from bridging dca groups, one of the nitrogen atoms of the dmphen molecule (1 and 2) and either one nitrile-nitrogen from a terminal dca ligand (1) or a nitrate-oxygen atom (2) build the equatorial plane whereas the second nitrogen atom of the heterocyclic dmphen fills the axial position (1 and 2). The copper-copper separations through double (1) and single (2) end-to-end dca bridges are 7.1337(7) (1) and 7.6617(7) (2). Compound 3 is a mononuclear copper(II) complex whose structure contains two neutral and crystallographically independent [Cu(4,4-dmbpy)(H2O)(dca)2] molecules which are packed in two different layer arrangements running parallel to the bc-plane and alternating along the a-axis. The copper atoms in both molecules have slightly distorted square pyramidal surroundings with the two nitrogen atoms of the 4,4-dmbpy ligand and two dca nitrile-nitrogen atoms in the basal plane and a water oxygen in the apical position. A semi co-ordinated dca nitrile-nitrogen from a neighbour unit [2.952(6) Å for Cu(2)-N] is in trans position to the apical water molecule in one of the two molecules, this feature representing part of the difference in supramolecular connections in the alternating layers referred to above. Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K reveal the occurrence of weak antiferromagnetic interactions through double [J=−3.3 cm−1 (1), ] and single [J=−0.57 cm−1 (2), ] dca bridges and across intermolecular contacts [θ=−0.07 K (3)].  相似文献   

3.
Metal-sulfur complex fragments, to which small molecules like N2, N2H2, N2H4, NH3, or CO can bind, are desirable model compounds concerning enzymatic N2 fixation.This paper reports on the effects of the phosphane co-ligand on formation and reactivity of [Ru(L)(PR3)(`N2Me2S2')] [`N2Me2S2'2−=1,2-ethanediamine-N,N-dimethyl-N,N-bis(2-benzenethiolate)(2−)] complexes with nitrogenase relevant ligands, especially N2, N2H4, NH3, and CO.Treatment of [Ru(NCCH3)4Cl2] with Li2`N2Me2S2', excessive LiOMe, bulky PPh3 or PCy3, respectively, led to the formation of two series of [Ru(L)(PR3)(`N2Me2S2')] complexes [for R=Ph: 1b, 1c (L=NCCH3), 6b (L=N2H4), 7b (L=N2), 8b1-3 (L=CO), 9b (L=NH3); for R=Cy: 1a (L=NCCH3), 6a (L=N2H4), 7a (L=N2), 8a (L=CO), 9a (L=NH3)]. While the use of PPh3 (θ=145°) yielded cis,trans and cis,cis isomers of [Ru(NCCH3)(PPh3)(`N2Me2S2')] (1b, 1c), no isomer formation was observed with the bulkier phosphane PCy3 (θ=170°). Sterically less demanding phosphanes (θ=118-132°) afforded bisphosphane complexes [Ru(PR3)2(`N2Me2S2')] [2d (R=Me), 2e (R=Et), 2f (R=nPr), and 2g (R=nBu)], which were practically inert and could only be converted in two cases and under drastic reaction conditions into the CO complexes [Ru(CO)(PR3)(`N2Me2S2')] [4e (R=Et), 4f (R=nPr)]. The chelating bidentate phosphane dppe (bisdiphenylphosphanoethane) yielded exclusively the mononuclear complex [Ru(dppe)(`N2Me2S2')] (3).  相似文献   

4.
An investigation into the interactions between thiamine monophosphate (TMP) and anions has resulted in the preparation and X-ray characterization of the compounds (TMP)(Hg2Br5)·0.5H2O (1) and (TMP)2(Hg3I8) (2). In each compound the TMP molecule exists as a monovalent cation in the usual F conformation. The halogenomercurate anions occur in two-dimensional (2-D) network in 1 or one-dimensional (1-D) chain in 2. In both 1 and 2, the structures consist of alternating cationic sheets of the hydrogen-bonded TMP molecules and anionic sheets of the polymeric halogenomercurate anions. The TMP molecule binds to the polymeric anions through the characteristic ‘anion bridge I’, C(2)H?X?pyrimidinium (X=Br in 1 and I in 2), and electrostatic interactions between electropositive S(1) and halogen atoms. The ‘anion bridge II’ of the type N(4′1)H?X?thiazolium (X=phosphate group) plays a role in stabilizing the molecular conformation. The biological implication of the host-guest-like complexation between TMP and polymeric anions is discussed.  相似文献   

5.
Two new organic-inorganic hybrid compounds [Zn(phen)(SO4)(H2O)2]n (1) and [Cu(phen)(H2O)2] · SO4 (2) have been prepared by conventional aqueous solution synthesis and characterized by single-crystal X-ray diffraction, IR spectroscopy, thermal gravimetric analysis (TGA) and fluorescent spectroscopy. In compound 1, the sulfate group adopts bidentate mode to coordinate with two Zn(II) ions to form one-dimensional polymer. The one-dimensional polymers are further linked together via the intermolecular hydrogen-bonding and π-π stacking interactions to form a 3D supramolecular framework. Compound 2 is build up of discrete [Cu(phen)(H2O]2+ cations and SO42− anions to form a three-dimensional framework via hydrogen-bonding and π-π stacking interactions. Furthermore, the luminescent properties of both 1 and 2 were studied. The complexes 1 and 2 excited at 280 nm wavelength produced characteristic luminescence features, arising maybe due to the π-π transitions.  相似文献   

6.
《Inorganica chimica acta》2004,357(15):4568-4576
The synthesis of palladacyclic derivatives with the hybrid pyridylphosphine ligands Py(CH2)OPPh2 (a) and PyNHPPh2 (b) in a neutral P,N-chelating coordination mode has been achieved. Treatment of selected chloride-bridged cyclometallated precursors [Pd(CN)(μ-Cl)]2 [CN = 2-pyridinin-phenyl Phpy, I-compounds; 7,8-benzoquinolyl Bzq, II-compounds; phenylazophenyl Azb, III-compounds or 2-(2-oxazolinyl)phenyl Phox, IV-compounds] with a or b in the presence of stoichiometric KPF6 gave the mononuclear derivatives Ia-IVa and Ib-IVb. The crystal structures of compounds [Pd(Azb)(Ph2POCH2Py-P,N)][PF6] (IIIa) and [Pd(Phpy)(Ph2PNHPy-P,N)][PF6] (Ib) have been determined. The new palladacyclopentadiene precursor [Pd{C4COOMe4}(CH3CN)2] (V) has been prepared starting from the polymeric complex [Pd{C4COOMe4}]n. Its usefulness in the preparation of new derivatives has been tested by means of the straightforward reaction with ligands (a) or (b) to give mononuclear compounds [Pd{C4(COOMe)4}(Ph2POCH2Py-P,N)] (Va) and [Pd{C4(COOMe)4}(Ph2PNHPy-P,N)] (Vb). The reactions of hydroxo-bridged precursors [Pd(CN)(μ-OH)]2 or [Pd2{C4(COOMe)4}2 (μ-OH)2][NBu4]2 with PyNHPPh2 afforded mononuclear complexes Ic-Vc in which a less common anionic P,N-binding mode is forced as a result of ligand deprotonation. The new complexes were characterised by partial elemental analyses and spectroscopic methods (IR, FAB, 1H and 31P{1H} NMR).  相似文献   

7.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

8.
A new three-dimensional open framework structure of mixed valence ethylenediamine-vanadium phosphate [C2H10N2][(HVIVO3)(HVVO2)(PO4)] (1), has been synthesized under mild hydrothermal conditions and characterized by elemental analyses, IR, fluorescent spectrum, TG-DTA and single crystal X-ray diffraction. Compound 1 exhibits a novel three-dimensional (3D) vanadium phosphate anion framework composed of vanadium, phosphate, and oxygen atoms through covalent bonds, with the diprotonated ethylenediamine [NH3CH2CH2NH3]2+ cations residing in the channels along c-axis. The organic diprotonated ethylenediamine cations interact with the O atoms in the inorganic network through hydrogen bonds. The electrochemical behavior of 1 has also been studied in detail by cyclic voltammograms, which is very important for practical applications in electrode modification. Furthermore, the strong photoluminescence property of compound 1 is also measured at room temperature.  相似文献   

9.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

10.
Two new heterometallic complexes, [Cu(en)(H2O)]2[Fe(CN)6]·4H2O (1) and [Cu(en)2][KFe(CN)6] (2), have been isolated from the reactions of CuCl2 and en with K3[Fe(CN)6] in different molar ratios. Both complexes have been characterized by X-ray analyses, IR spectra and elemental analyses. Complex 1 is a cyanide bridged bimetallic assembly, its crystal structure consists of a two-dimensional polymeric sheet with two different rings, one a four-membered square ring and another a 12-membered hexagonal ring. The Fe(II) ion of 1 has two terminal, two linear bridging and two 1,1 en-on bridging cyanide groups. In the crystal structure of 2, the neighboring [Fe(CN)6]3− units are bridged by the K+ and the [K[Fe(CN)6]]2− units forming a three-dimensional network structure. The [Cu(en)2]2+ units fill in the holes of the network acting as counter cations and charge compensations. Variable temperature magnetic susceptibility studies of 1 indicate that the complex exhibits ferromagnetic interaction between the Cu(II) ions.  相似文献   

11.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

12.
The photoirradiation reactions of two geometrical isomers (cis-1 and cis-2) of [Ru(OAc)(2cqn)2NO] (H2cqn=2-chloro-8-quinolinol) were studied. Cis-2 [Ru(OAc)(2cqn)2NO] (2) photochemically isomerized to cis-1 [Ru(OAc)(2cqn)2NO] (1) in CH2Cl2 or DMSO using an Xe lamp as a light source and the reaction was irreversible. The 2 to 1 isomerization coexisting with 15NO gas and its evolution of the 1H NMR spectra showed that the dissociation and recombination of both the NO and the acetate ion involve in the isomerization. On the other hand, 1 did not isomerize but the NO ligand exchanged with 15NO. The crystal structures of 1 and 2 were determined by X-ray diffraction.  相似文献   

13.
The reaction of [RuCl3(2mqn)NO] (H2mqn=2-methyl-8-quinolinol) with 2-chloro-8-quinolinol (H2cqn) afforded cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 1), cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) (complex 2) and a 1:1 mixture of cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) and cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 3). The reaction was compared with that of [RuCl3(2mqn)NO] with 8-quinolinol (Hqn) or 5-chloro-8-quinolinol (H5cqn). Photoirradiation reaction of complex 1 at room temperature in deaerated CH2Cl2 in the presence of NO gave trans-[RuCl(2cqn)(2mqn)NO] (the Cl is trans to the NO) and complex 2 with recovery of complex 1. The reaction was contrasted with that of cis-1 [RuCl(qn)(2mqn)NO] or cis-1 [RuCl(5cqn)(2mqn)NO]. The crystal structure of complex 1 was determined by X-ray diffraction. The reactions were examined under consideration of atomic charge of the phenolato oxygen in 8-quinolinol and its derivatives calculated at the restricted Hartree-Fock/6-311G** level.  相似文献   

14.
Bimetallic alkylidene complexes of molybdenum (RF3O)2(ArN)MoCH-SiMe2-CHMo(NAr)(ORF3)2 (1) and (RF3O)2(ArN)MoCH-SiPhVin-CHMo(NAr)(ORF3)2 (2) (Ar = 2,6-C6H3; RF3 = CMe2CF3) have been prepared by the reactions of vinyl silicon reagents Me2Si(CHCH2)2 and PhSi(CHCH2)3 with known alkylidene compound PhMe2C-CHMo(NAr)(ORF3)2. Complexes 1 and 2 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1 and 2 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and predominant cis-units content in the case of 2.  相似文献   

15.
Reaction between the carbonyl, nitrosyl complex, OsCl(CO)(NO)(PPh3)2 (1) and dioxygen results in combination of CO and O2, forming a chelating peroxycarbonyl ligand in the yellow complex, Cl(NO)(PPh3)2 (2). Confirmation of the unique peroxycarbonyl ligand arrangement in 2 is provided by crystal structure determination. When 2 is heated, as a suspension in heptane under reflux, there is a rearrangement to the regular chelating carbonate ligand in the orange complex, Cl(NO)(PPh3)2 (3). The structure of 3 has also been determined by X-ray crystallography. Compound 2 also undergoes the following reactions: with water, releasing CO2 and forming Os(OH)2Cl(NO)(PPh3)2 (4); with HCl releasing CO2 and forming Os(OH)Cl2(NO)(PPh3)2 (5); and with excess triphenylphosphine releasing CO2 and triphenylphosphine oxide forming OsCl(NO)(PPh3)3 (6).  相似文献   

16.
A new synthesis of RuII(bpy)(sal)2 (1) (bpy=2,2-bipyridyl, sal=salicylaldehyde) has been developed and the separation and characterization of all three geometric isomers have been completed. The isomers are denoted 1a (phenolic oxygens trans), 1b, (aldehyde oxygens trans), and 1c (aldehyde oxygen trans to phenolic oxygen). All three isomers have been characterized by 1H NMR, high resolution FAB-MS, UV-Vis, and cyclic voltammetry. Additionally, 1a has been characterized by solid-state UV-Vis and a single-crystal X-ray structural study. The solid-state packing of the RuII(bpy)(sal)2 molecules in the structure of 1a displays intermolecular π-π interactions between bpy ligands of adjacent molecules. The bpy interactions form infinite π-stacks with alternating short stacking distances of 3.437 and 3.402 Å.  相似文献   

17.
The reaction between [Rh(H2O)6](ClO4)3 and the monoanion Hdopn (H2dopn=bis(diacetylmonoxime-imino)propane 1,3=3,9-dimethyl-4,8-diazaundeca-3,8-diene-2,10-dione dioxime) afforded a new dimeric rhodium(II) compound of formula [Rh(Hdopn)(H2O)]2(ClO4)2 · H2O (1). Treatment of methanolic solution of 1 with NaX (X=Cl, Br, I) results in the replacement of water with halides in 1, leading to the formation of [Rh(Hdopn)X]2 rhodium(II) dimers. The X-ray crystal structure of [Rh(Hdopn)Cl]2 · 0.5H2O (2) was determined showing a [Rh(II)-Rh(II)] core. Upon the reaction of 1 with NaI carried out in air, [Rh(Hdopn)(I)2] (3) was isolated and characterized by a single-crystal X-ray diffraction analysis.  相似文献   

18.
《Inorganica chimica acta》2005,358(3):520-526
The strong affinity of coordinated biimidazole for chloride ion via N-H?Cl hydrogen bonding has been used as a strategy to build up two different modular assemblies between chloride and biimidazole-metal modules. The crystal structure of these two new metal-containing architectures, {[Cu(H2biim)2]Cl2 (1) and [Zn(Cl)(H2biim)2]Cl (2)}, is reported. The EPR spectrum of 1 is also discussed.  相似文献   

19.
New phosphorus ligands of the type (SPPh2)(O2SR)NH [R=Me (1), C6H4Me-4 (2)] were prepared as white crystalline solids using the reactions between Li[HN(S)PPh2] and RSO2Cl. They were easily converted into their alkali metal salts, M[(SPPh2)(O2SR)N] (M=Li, Na, K). Both the free acids and their alkali metal salts were characterised by multinuclear (1H, 13C, 31P) NMR spectroscopy. The molecular structures of the free acids were established by single crystal X-ray diffraction. They crystallize in the tetragonal space group I41/a (1) and the triclinic space group P−1 (2), respectively. In both compounds the acidic proton is attached to nitrogen and the molecular units are associated through SO?H-N intermolecular hydrogen bonding [H?O 2.216 in 1 and 2.029 Å in 2]. A supramolecular chain-like structure is formed in 1 and dimeric units are built in 2. For both compounds a conformation close to syn-syn can be considered for the SP(C)2-N-SC(O)2 fragment.  相似文献   

20.
New copper(II) clofibriates (clof, {2-(4-chlorophenoxy)-2-methylpropionic or 2-(4-chlorophenoxy)isobutyric acid}) of composition Cu(clof)2L2 (where L=2-pyridylmethanol (2-pymeth) (1), N-methylnicotinamide (Menia) (4), N,N-diethylnicotinamide (Et2nia) (5), isonicotinamide (isonia) (7) or methyl-3-pyridylcarbamate (mpc) (8)), [Cu(clof)2(4-pymeth)2(H2O)] · 2H2O (4-pymeth=4-pyridylmethanol) (2 · 2H2O) and Cu(clof)2L (where L=4-pymeth (3) or Et2nia (6)) have been prepared and spectroscopically characterized. All the Cu(clof)2L2 compounds seem to possess distorted octahedral copper(II) stereochemistry with differing tetragonal distortions. An X-ray analysis of 1 was carried out and it featured a tetragonal-bipyramidal geometry around the copper(II) atom. X-ray analysis of 2 · 2H2O featured a square-pyramidal geometry around copper(II) atom. Both the Cu(clof)2L compounds seem to consist of a binuclear unit of tetracarboxylate type bridging. An X-ray analysis of 6 revealed typical binuclear paddle-wheel type structure, consisting of two copper(II) atoms in square-pyramidal geometry bridged by four carboxylate anions in the xy-plane. All complexes under study were characterized by EPR and electronic spectroscopy. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号