首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of Ln(III) ions with the precursor [Cu(opba)]2− in DMSO has afforded a series of isostructural compounds of general chemical formula Ln2[Cu(opba)]3(DMSO)6(H2O) · (H2O), where Ln(III) stands for a lanthanide ion and opba stands for ortho-phenylenebis(oxamato). The crystal structure has been solved for the Gd(III) containing compound. It crystallizes in the orthorhombic system, space group Pbn21 (No. 33) with a = 9.4183(2) Å, b = 21.2326(4) Å, c = 37.9387(8) Å and Z = 4. The structure consists of ladder-like molecular motifs parallel to each other. To the best of our knowledge, this is the first Ln(III)Cu(II) coordination polymer family exhibiting the same crystal structure over the whole lanthanide series. The magnetic properties of the compounds have been investigated and the magnetic behavior of the Gd(III) containing compound was studied in more detail.  相似文献   

2.
Two novel bis(oxo)-bridged dinuclear manganese(IV) complexes with the binucleating ligand o-phenylenebis(oxamate) (opba), formulated as (Me4N)4[Mn2O2(opba)2] (1a) and (Me4N)2(Ph4P)2[Mn2O2(opba)2] · 8H2O (1b), have been synthesized and characterized structurally and magnetically. Like the parent complex (Ph4P)4[Mn2O2(opba)2] · 4H2O (1c), they possess unique Mn2(μ-O)2 bridging cores with two additional o-phenylenediamidate bridges which lead to exceptionally short Mn-Mn distances (2.63-2.67 Å) and fairly bent Mn-O-Mn angles (93.8-95.5°). Complexes 1a-c show a moderate to strong antiferromagnetic coupling between the two high-spin MnIV ions through the bis(oxo)bis(o-phenylenediamidate) quadruple bridge (−J = 70-164 cm−1; H = −JS1 · S2). Along this series, the −J values increase with the shortening of the Mn-Mn distance and/or the lessening of the Mn-O-Mn angle. Electronic structure calculations on model complexes reproduce the observed dependence of −J with the Mn-O-Mn angle at short intermetallic distances, and reveal that the magnetic coupling is dominated by the in-plane 3dx2-y2 type superexchange pathway via the oxo bridges with a small but nonnegligible contribution from direct 3dx2-y2 type Mn-Mn σ-bond.  相似文献   

3.
Iron(III) porphinate complexes of phenolate that have NH?O hydrogen bonds on the coordinating oxygen, [FeIII(OEP){O-2,6-(RCONH)2C6H3}] (R = CF3 (1), CH3 (3)) and [FeIII(OEP)(O-2-RCONHC6H4)] (R = CF3 (2), CH3 (4)) (OEP = 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphinato), were synthesized and characterized as models of heme catalase. The presence of NH?O hydrogen bonds was established by their crystal structures and IR shifts of the amide NH band. The crystal structure of 1 shows an extremely elongated Fe-O bond, 1.926(3) Å, compared to 1.887(2) Å in 2 or 1.848(4) Å in [FeIII(OEP)(OPh)]. The NH?O hydrogen bond decreases an electron donation from oxygen to iron, resulting in a long Fe-O bond and a positive redox potential.  相似文献   

4.
A novel macrocyclic hexanuclear iron(III) 18-azametallacrown-6 compound, [Fe6(C9H7N2O3)6(CH3OH)6]·8CH3OH·2H2O, has been prepared using a trianionic pentadentate ligand N-acetylsalicylhydrazide (ashz3−) and characterized by X-ray diffraction. Due to the meridional coordination of the ligand to the Fe3+ ion, the ligand enforces the stereochemistry of the Fe3+ ions as a propeller configuration with alternating Λ/Δ forms. The disc-shaped hexanuclear ring shows about 6.20 Å in diameter at entrance, about 9.31 Å at its largest diameter at the center of the cavity, respectively. There are many kinds of intramolecular and intermolecular hydrogen bonds in the title compound. The OH?O hydrogen bond distances range from 2.609(5)-2.901(5) Å. The magnetic susceptibility (4-275K) study indicates antiferromagnetic exchange interactions between the adjacent Fe3+ ions around the ring.  相似文献   

5.
The structures of the solvated iron(II) and iron(III) ions have been studied in solution and solid state by extended X-ray absorption fine structure (EXAFS) in three oxygen donor solvents, water, dimethylsulfoxide (Me2SO), N,N′-dimethylpropyleneurea (DMPU), and one sulfur donor solvent, N,N-dimethylthioformamide (DMTF); these solvents have different coordination and solvation properties. In addition, the structure of hexakis(dimethylsulfoxide)iron(III) perchlorate has been determined crystallographically to support the determination of the corresponding solvate in solution. The hydrated, the dimethylsulfoxide and N,N-dimethylthioformamide solvated iron(II) ions show regular octahedral coordination in both solution and solid state with mean Fe-O, Fe-O, and Fe-S bond distances of 2.10, 2.10, and 2.52 Å, respectively, whereas the N,N′-dimethylpropyleneurea iron(II) solvate is five-coordinated, d(Fe-O) = 2.06 Å. The compounds vary in color from light green (hydrate) to dark orange or red (DMPU). The hydrated iron(III) ion in aqueous solution and the dimethylsulfoxide solvated iron(III) ions in solution and solid state show the expected octahedral coordination, the Fe-O bond distances are 2.00 Å for both, whereas the N,N′-dimethylpropyleneurea iron(III) solvate is found to be five-coordinated with a mean Fe-O bond distance of 1.99 Å. The N,N-dimethylthioformamide solvated iron(III) ion in the solid perchlorate salt is tetrahedrally four-coordinated, the mean Fe-S bond distance is 2.20 Å. Iron(III) is reduced with time to iron(II) in N,N-dimethylthioformamide solution. The compounds vary in color from pale yellow (hydrate) to blackish red (DMPU).  相似文献   

6.
 Diiron-oxo proteins currently represent one of the most rapidly developing areas of bioinorganic chemistry. All of these proteins contain a four-helix bundle protein fold surrounding a (μ-carboxylato)diiron core, and most, if not all, of the diiron(II) sites appear to react with O2 as part of their functional processes. Despite these common characteristics, an emerging functional diversity is one of the most striking aspects of this class of proteins. X-ray crystal structures of diiron(II) sites are now available for four of these proteins: hemerythrin (Hr), the hydroxylase protein of methane monooxygenase (MMOH), the R2 protein of Escherichia coli ribonucleotide reductase (RNR-R2), and a plant acyl-carrier protein Δ9-desaturase. The structure of the diiron(II) site in Hr, the sole O2 carrier in the group, is clearly distinct from the other three, whose function is oxygen activation. The Hr diiron site is more histidine rich, and the oxygen-activating diiron sites contain a pair of (D/E)X30–37EX2H ligand sequence motifs, which is clearly not found in Hr. The Hr diiron site apparently permits only terminal O2 coordination to a single iron, whereas the oxygen-activating diiron(II) centers present open or labile coordination sites on both irons of the center, and show a much greater coordinative flexibility upon oxidation to the diiron(III) state. Intermediates at the formal FeIIIFeIII and FeIVFeIV oxidation levels for MMOH and formal FeIIIFeIV oxidation level for RNR-R2 have been identified during reactions of the diiron(II) sites with O2. An [Fe2(μ-O)2]4+, 3+ "diamond core" structure has been proposed for the latter two oxidation levels. The intermediate at the FeIIIFeIV oxidation level in RNR-R2 is kinetically competent to generate a stable, functionally essential tyrosyl radical. The FeIVFeIV oxidation level is presumed to effect hydroxylation of hydrocarbons in MMOH, but the mechanism of this hydroxylation, particularly the involvement of discrete radicals, is currently controversial. The biological function of diiron sites in three members of this class, rubrerythrin, ferritin and bacterioferritin, remains enigmatic. Received: 31 July 1996 / Accepted: 4 October 1996  相似文献   

7.
The hydrothermal reaction of MoO3, Na3VO4, 2,2′:6′,2″-terpyridine (terpy) and H2O in the mole ratio 1.53:1.00:1.30:1460 at pH 3 yields red crystals of [{VO(terpy)}MoO4] (1) in 55% yield. The structure of 1 is a one-dimensional chain of {VO(terpy)}2+ units bridged in the characteristic O,O′-mode by {MoO4}2− tetrahedra. Crystal data: C15H11N3O5MoV, orthorhombic, P212121, a=26.145(1) Å, b=6.7607(4) Å, c=9.2496(5) Å, V=1634.9(2) Å3, Z=2, Dcalc=1.869 g cm−3; structure solution and refinement converged at R1=0.0335 and wR2=0.0735.  相似文献   

8.
The reaction of triethylenetetramine, salicylaldehyde and benzaldehyde in 1:2:1 mole ratio in methanol at room temperature affords a novel μ-bis(tridentate) ligand H2L′ through the formation of an imidazolidine ring within the parent hexadentate precursor in a two step reaction. The ligand H2L′ reacts with Fe(ClO4)2 · 6H2O in aqueous methanol in the presence of triethylamine to form the mononuclear [FeIIIL](ClO4) complex, (where L2− is the anion of the parent hexadentate H2saltrien ligand) after the cleavage of the imidazolidine ring. The mononuclear complex has a structure with an N4O2 donor atom set of the hexadentate ligand forming a distorted octahedral coordination geometry around the metal atom as established from a crystal structure determination. The Fe-N(imine) distances are 1.934(10) and 1.948(9) Å, Fe-N(amine) distances are 2.062(8) and 2.076(9) Å and Fe-O(phenol) distances are 1.864(8) and 1.872(7) Å. The terminal oxygen donor atoms occupy cis positions and the remaining four nitrogen atoms (two cis amine and two trans imine) complete the coordination sphere. The mononuclear complex has a magnetic moment 1.89 μB corresponding to the low-spin 3d5 configuration. The UV-Vis spectrum of the end product, after the imidazolidine ring hydrolysis, is different from the spectrum of the initial reaction mixture containing the μ-bis(tridentate) ligand H2L′.  相似文献   

9.
Two new neutral, binuclear CuIICuII bis(oxamato) complexes with the formula [Cu2(opba)(pmdta)(MeOH)] · 1/2MeOH · dmf (3) and [Cu2(nabo)(pmdta)(MeOH)] (4), with opba = o-phenylene-bis(oxamato), nabo = 2,3-naphthalene-bis(oxamato), pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine and dmf = dimethylformamide have been synthesized and their crystal structures have been determined. The structure of 3 consists of dimeric [Cu2(opba)(pmdta)(MeOH)] entities, joined together by mutual intermolecular Cu?O contacts of the Cu2+ ion of one [Cu(opba)]2− complex fragment and one carboxylate atom of the oxamato group of a second [Cu(opba)]2− complex fragment. The structure of 4 consists of neutral binuclear complexes joined together by hydrogen bonds and π-π interactions, giving rise to an unique supramolecular 1D-chain. The magnetic properties of 3 and 4 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter, identical values of (−114 ± 2) cm−1 (3) and (−112 ± 2) cm−1 (4) were obtained.  相似文献   

10.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

11.
The kinetics of the formation of the purple complex [FeIII(EDTA)O2]3−, between FeIII-EDTA and hydrogen peroxide was studied as a function of pH (8.22-11.44) and temperature (10-40 °C) in aqueous solutions using a stopped-flow method. The reaction was first-order with respect to both reactants. The observed second-order rate constants decrease with an increase in pH and appear to be related to deprotonation of FeIII-EDTA ([Fe(EDTA)H2O] ⇔ Fe(EDTA)OH]2− + H+). The rate law for the formation of the complex was found to be d[FeIIIEDTAO2]3−/dt=[(k4[H+]/([H+] + K1)][FeIII-EDTA][H2O2], where k4=8.15±0.05×104 M−1 s−1 and pK1=7.3. The steps involved in the formation of [Fe(EDTA)O2]3− are briefly discussed.  相似文献   

12.
Hydrogen bonding networks proximal to metal centers are emerging as a viable means for controlling secondary coordination spheres. This has led to the regulation of reactivity and isolation of complexes with new structural motifs. We have used the tridenate ligand bis[(N′-tert-butylureido)-N-ethyl]-N-methylaminato ([H21]2−) that contains two hydrogen bond donors to examine the oxidation of the FeII-acetate complex, [FeIIH212-OAc)] with dioxygen, amine N-oxides, and xylyl azide. A complex with FeIII-O-FeIII core results from the oxidation with dioxygen and amine N-oxides, in which the oxo ligand is involved in hydrogen bonding to the [H21]2− ligand. A distinctly different hydrogen bonding network was found in FeIII dimer isolated from the reaction with the xylyl azide: a rare FeIII-N(R)-FeIII core was observed that does not have hydrogen bonds to the bridging nitrogen atom. The intramolecular H-bond networks within these dimers appear to adjust to the presence of the bridging species and rearrange to its size and electron density.  相似文献   

13.
The unusual 18e seven-coordinate Mo(II) complex [Mo(NO)(H2NO-κ2N,O)(TpMe2)I] (1; [TpMe2] is hydrotris(3,5-dimethylpyrazol-1-yl)borate) has been synthesised and characterised by IR, 1H NMR and ESI-MS spectroscopies and by a single crystal X-ray diffraction study. The complex has a distorted pentagonal bipyramid structure with equatorial κ2-NH2O ligand (dN-O = 1.387 Å, dMo-N and dMo-O equal 2.049 and 2.092 Å, respectively). In the solid state 1 exists as a dimer (the point group Ci) due to the formation of two NH?O hydrogen bonds (dN-H?O = 2.064 Å) between the adjacent NH2O ligands, whilst in solution at/or above RT it resolves itself giving a monomer, which readily isomerises to more thermodynamically stable diastereoisomer.  相似文献   

14.
The hydrothermal reaction of NiCl2·6H2O, MoO3, 3,4′-bipyridine (3,4′-bpy) and H2O in the mole ratio 1.0:1.0:2.1:1500 yields [Ni(3,4′-bpy)2MoO4]·3H2O (1·3H2O) in 80% yield. The structure of 1·3H2O consists of a three-dimensional coordination polymer {Ni(3,4′-bpy)2}n2n+ with entrained {MoO4}2− tetrahedra and with water molecules of crystallization occupying channels within the bimetallic oxide-ligand framework. Crystal data: C20H16N4O4NiMo·3H2O (1·3H2O), tetragonal P41212, a=13.1866(5) Å, c=29.458(2) Å, V=5122.3(4) Å3, Z=8, Dcalc=1.532 g cm−3.  相似文献   

15.
The first organically templated molybdenum iodates (C5H6N)2Mo2O5(IO3)4(H2O)2 (1), (C10H8N2)[MoO2(IO3)3] · H3O (2), and uranium iodate (C5H5N)2[(UO2)(IO3)3](IO3) (3), have been successfully synthesized under mild hydrothermal conditions. Compound 1 is simple zero-dimensional units consisting of [(Mo2O5(IO3)4)]2− anions, which can be described as a tetranuclear unit hanged on either side by two [IO3] groups. The [Mo2O5(IO3)4]2− anions are in a close connection through the water molecules and protonated pyridine cations, via hydrogen bonds and intermolecular actions. Compound 2 is built up from [MoO6] octahedra and [IO3] pyramids to two-dimensional layers, in which 4,4′-bipy molecules and water cations are located, forming strong hydrogen bonds with the inorganic framework, leading to pseudo three-dimensional structure. Compound 3 is one-dimensional ribbons containing {[(UO2)(IO3)3](IO3)}2− anions and charge neutrality is achieved by the protonated 4,4′-bipy cations, which reside between two ribbons, forming hydrogen bonds with the inorganic framework and resulting in pseudo two-dimensional structure. Crystal data are as follows: (C5H6N)2Mo2O5(IO3)4(H2O)2 (1), orthorhombic, Pnma, a = 24.097(5) Å, b = 13.532(3) Å, c = 7.836(16) Å, Z = 4, V = 2555.2(9) Å3; (C10H8N2)[MoO2(IO3)3] · H3O (2), monoclinic, C2/c, a = 24.176(5) Å, b = 10.751(2) Å, c = 7.5074(15) Å, β = 107.44(3)°, Z = 8, V = 1861.6(6) Å3; (C5H5N)2[(UO2)(IO3)3](IO3) (3), monoclinic, P21/n, a = 14.430(3) Å, b = 7.3459(15) Å, c = 19.811(4) Å, β = 106.70(3)°, Z = 4, V = 2011.3(7) Å3.  相似文献   

16.
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)2 · 6H2O with N,N-bis(2-pyridylmethyl)amine (L1); N-(2-pyridylmethyl)-N′,N′-dimethylethylenediamine (L2); and N-(2-pyridylmethyl)-N′,N′-diethylethylenediamine (L3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L1)(N3)(ClO4) (1), the end-to-end diazido-bridged Cu2(L2)2(μ-1,3-N3)2(ClO4)2 (2) and the single azido-bridged (μ-1,3-) 1D chain [Cu(L3)(μ-1,3-N3)]n(ClO4)n (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = −3.43 cm−1 and R = 1 × 10−5. The magnetic data for 3 were fitted to Baker’s expression for S = 1/2 and the parameters obtained were J = 1.6 cm−1 and R = 3.2 × 10−4. Crystal data are as follows. Cu(L1)(N3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Å; β = 102.960(10)°; Z = 4. Cu(L2)(μ-N3)(ClO4): Chemical formula, C10H17ClN6O4Cu: crystal system, monoclinic; space group, P21/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Å; β = 102.360(10)°; Z = 4. [Cu(L3)(μ-N3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Å; β = 103.405(10)°; Z = 4.  相似文献   

17.
Synthesis and characterisation of the new macrocyclic ligand 1,7-dimethyl-4,10-di(methylcarbamoylmethy)-1,4,7,10-tetraazacyclododecane (L) are reported. The ligand, based on cyclen (1,4,7,10-tetraazacyclododecane), has been functionalised by the insertion of two methyl groups and two amidic pendant arms linked to the amine nitrogens. The interaction of L with H+, Na(I), Ca(II), Cu(II), Zn(II), Pb(II), and Gd(III) ions has been studied by potentiometric titrations, microcalorimetric and 1H NMR measurements in 0.1 mol dm−3 Me4NCl aqueous solution at 298.1±0.1 K. The thermodynamic data suggest that the N4 moiety is the binding site for Cu(II) and Zn(II), while in the case of Pb(II) also the pendant arms are coordinated to the metal ion. The crystal structure of [PbL](ClO4)2 (space group P21/a, a=12.883(2) Å, b=12.259(3) Å, c=17.275(5) Å, β=108.65(2)°, V=2585.0(11) Å3, Z=4, R=0.0660, RW 2=0.1467) shows the metal ion hexa-coordinated by the four nitrogen atoms of the cyclic tetra-amine and by the two amidic oxygens of the pendant arms.  相似文献   

18.
A new germanium-polyoxovanadate, (H3aep)4[V14Ge8O50]·2(aep)·13H2O (1), has been synthesized under solvothermal conditions applying GeO2, NH4VO3, Cu(NO3)2·3H2O and an aqueous solution of 1-(2-aminoethyl)-piperazine (aep, C6H18N3) in the temperature range from 110 to 150 °C. The compound crystallizes in the non-centrosymmetric tetragonal space group P-421c with = 17.193(1) Å, = 16.501(1) Å, V = 4877.9(5) Å3 and Z = 2. The structure consists of isolated spherical [VIV14GeIV8O50]12− cluster anions and protonated amine molecules as counterions. The cluster anion can be viewed as a derivative of the [V18O42] archetype by replacing four VO5 pyramids by four Ge2O7 units. The latter are formed by corner-sharing of two [GeO4]4− tetrahedra. At temperatures above 150 °C the compound (H2pip)4(Hpip)4[VIV14GeIV8O50(H2O)] (2) (pip = piperazine, C4N2H10) is formed and during the reaction Cu2+ is reduced to elemental copper. This redox reaction is essential for the formation of 2. The crystal water molecules in the structure of 1 are emitted at low temperatures. The magnetic properties are dominated by strong intra-cluster antiferromagnetic coupling and the strongest exchange between edge- and corner-sharing VO5 square pyramids results in an eight-membered spin ring to which two three-membered spin bridges are joined. The magnetic susceptibility data suggest that even at the low temperature of 2 K several multiplet states are still significantly populated.  相似文献   

19.
Two polymorphic crystal structures of the title compound, dibromo[(−)-sparteine-N,N]copper(II), 1, were determined. The structures of two isomorphs of 1, 1a [orthorhombic, P212121, a=11.0463(9) Å, b=11.9839(15) Å and c=12.7835(19) Å] and 1b [orthorhombic, P212121, a=7.6779(9) Å, b=12.0927(14) Å and c=18.090(2) Å], are composed of the same basic structural unit, Cu(C15H26N2)Br2. The bond distances in the molecular structures of 1a and 1b are identical to each other within the esds. However, there are slight differences in the bond angles around the Cu(II) center and considerable differences in their packing structure. Crystal 1a exhibits weak anti-ferromagnetism (J=−1.89 cm−1) as opposed to the magnetically isolated paramagnetism observed for the analogous dichloro[(−)-sparteine]copper(II), 2. The results of a magneto-structural investigation of 1a and 2, and other supporting evidence, suggest that the pathway for the weak antiferromagnetic super-exchange in 1a might be through a Cu-Br ? Br-Cu contact.  相似文献   

20.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H2O2 with concurrent evolution of O2. This pseudocatalatic degradation of H2O2 to O2 is solely dependent on ascorbate and is blocked by a spin trap, α-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H2O with subsequent regeneration of ascorbate by the reduction of MDA with H2O2 evolving O2 through the intermediate formation of O2. Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN. Further kinetic studies indicate that SCN itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H2O2 to O2. Binding studies by optical difference spectroscopy indicate that SCN binds LmAPX (Kd = 100 ± 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号