首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex [PdCl(bdtp)](BF4), in presence of AgBF4 or NaBF4, reacts with pyridine (py), triphenylphosphine (PPh3), cyanide (CN), thiocyanate (SCN) or azide (N3) ligands, leading to the formation of the following complexes: [Pd(bdtp)(py)](BF4)2 [1](BF4)2, [Pd(bdtp)(PPh3)](BF4)2 [2](BF4)2, [Pd(CN)(bdtp)](BF4) [3](BF4), [Pd(SCN)(bdtp)](BF4) [4](BF4) and [Pd(N3)(bdtp)](BF4) [5](BF4). These complexes were characterised by elemental analyses, mass spectrometry, conductivity measurements, infrared and NMR spectroscopies. The crystal structure of [2](BF4)2 was determined by single-crystal X-ray diffraction methods. The metal atom is coordinated by two azine nitrogen atoms, and one sulfur atom of the thioether-pyrazole ligand and one triphenylphosphine in a distorted square-planar geometry.  相似文献   

2.
Reaction between a mixture of cis-trans-[PtCl2(SMe2)2] and 1 equiv. AsPh3 in chloroform gives cis-[PtCl2(SMe2)(AsPh3)] crystallizing in P21/n with a=10.397(2), b=14.876(3), c=13.956(3) Å, β=90.86(3)° and Z=4. Selected geometrical parameters are PtAs 2.3531(10), PtS 2.262(2), PtCl (trans to S) 2.301(2), PtCl (trans to As) 2.328(2) Å and SPtAs 88.85(6), SPtCl(2) 90.77(8), AsPtCl(1) 91.07(6) and ClPtCl 89.42(7)°. cis-[PtCl2(AsPh3)2]·CHCl3 crystallizes in P21/c with a=20.557(4), b=9.5951(19), c=20.147(4) Å, β=96.77(3)° and Z=4. Selected geometrical parameters are PtAs(1) 2.3599(9), PtAs(2) 2.3770(9), PtCl(1) (trans to As(1)) 2.3515(18), PtCl(2) (trans to As(2)) 2.3251(18) Å and AsPtAs 97.87(3), As(1)PtCl(2) 88.67(5), As(2)PtCl(1) 84.30(5) and ClPtCl 89.32(7)°. By comparison with related structures from the literature the following trans influence series was established PMe2Ph>PPh3>AsPh3≈SbPh3>Me2SO≈SMe2≈SPh2>NH3≈olefin>Cl>MeCN.  相似文献   

3.
The reaction of cis- and trans-[PtCl2(NCCH2Ph)2] with a 5-fold excess of MeNH2 and Me2NH in CH2Cl2 at −10 °C affords in high yield the bis-amidine derivatives cis- and trans-[PtCl2{Z-N(H)C(NHMe)CH2Ph}2] (1a, 2a) and cis- and trans-[PtCl2{E-N(H)C(NMe2)CH2Ph}2] (3a, 4a), respectively. The complexes were characterized by means of elemental analysis, multinuclear NMR and FT-IR techniques. The X-ray diffraction analysis was carried out for trans-[PtCl2{Z-N(H)C(NHMe)CH2Ph}2] (2a).Moreover, the in vitro cytotoxicity for the new derivatives was evaluated in a wide panel of human tumor cell lines.  相似文献   

4.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

5.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

6.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

7.
The reaction between [Rh(H2O)6](ClO4)3 and the monoanion Hdopn (H2dopn=bis(diacetylmonoxime-imino)propane 1,3=3,9-dimethyl-4,8-diazaundeca-3,8-diene-2,10-dione dioxime) afforded a new dimeric rhodium(II) compound of formula [Rh(Hdopn)(H2O)]2(ClO4)2 · H2O (1). Treatment of methanolic solution of 1 with NaX (X=Cl, Br, I) results in the replacement of water with halides in 1, leading to the formation of [Rh(Hdopn)X]2 rhodium(II) dimers. The X-ray crystal structure of [Rh(Hdopn)Cl]2 · 0.5H2O (2) was determined showing a [Rh(II)-Rh(II)] core. Upon the reaction of 1 with NaI carried out in air, [Rh(Hdopn)(I)2] (3) was isolated and characterized by a single-crystal X-ray diffraction analysis.  相似文献   

8.
In this paper it is reported the synthesis of the phosphonium salts [Ph2P(CH2)n(Ph)2PCH2COOMe]Br (n = 1 (1), 2 (2)) and [Ph2P(CH2COOMe)(CH2)n(Ph)2PCH2COOMe]Br2 (n = 3 (3)) derived from the reactions of the diphosphines dppm, dppe and dppp with methyl bromoacetate. By reaction of the monophosphonium salt of dppm and dppe with the strong base Na[N(SiMe3)2] the corresponding carbonyl stabilized ylides Ph2P(CH2)n(Ph)2PCHCOOMe (n = 1 (4), 2 (5)) were obtained. The Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide was reacted with Pd(II) and Pt(II) substrates. From these reactions were isolated exclusively complexes in which the ylide was chelated to the metal through the free phosphine group and the ylidic carbon atom. A further reaction of the Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide with 1.5 equiv. of Na[N(SiMe3)2] gives the bifunctionalized ketenylidene Ph2P(CH2)2(Ph)2PCCO (6) system. This cumulenic ylide reacts with Pt(II) complexes to form a chelated derivative in which IR and NMR spectra suggest the breaking of the CC bond of the -CCO group.  相似文献   

9.
Novel ionic mixed-ligands complexes of the types cis- and trans-[Pt(amine)2(pm)2](NO3)2 (where pm = pyrimidine) were synthesized and studied in the solid state by IR spectroscopy and in aqueous solution by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The results of the solution NMR characterization have shown that the isolated compounds are pure. In 195Pt NMR, the cis RNH2 complexes were observed at slightly lower fields (ave. −2441 ppm) than the equivalent trans analogues (ave. −2448 ppm). For Me2NH, the difference between the two isomers is larger (29 ppm). The complexes are observed at lower fields (difference of 100 ppm) than the corresponding [Pt(amine)4]2+ complexes, which might indicate the presence of π-backdonation in the Pt-pm bond. In 1H NMR, the coupling constants 3J(195Pt-1Hamine) are larger in the cis compounds (38-48 Hz) than in the trans analogues (30-36 Hz). The 3J(195Pt-1Hpm) values are also larger for the cis isomers. In 13C NMR spectroscopy, the coupling constants 3J(195Pt-13Camine) are 36 Hz (ave.) for the cis complexes and 26 Hz (ave.) for the trans isomers, while the 2J(195Pt-13Camine) are 18 Hz (cis) and 14 Hz (trans), respectively. The 3J(195Pt-13C5(pm)) values are 36 Hz (cis) and 28 Hz (trans). A few 2J(195Pt-13Cpm) couplings were observed (7-10 Hz).  相似文献   

10.
Reaction of benzisothiazolinone (Bit), a well-known biocide, with the Pd(II) and Pt(II) am(m)ine precursors cis-[Pd(en)(H2O)2](NO3)2 and cis-[Pt(NH3)2(H2O)2](NO3)2 yielded cis-Pd(en)(Bit−1H)2 and cis-Pt(NH3)2(Bit−1H)2, respectively. Bit is bound to the metal centres in both cases through the deprotonated isothiazolinone N. The crystal structures of a Bit/BitO co-crystal and cis-Pd(en)(Bit−1H)2·H2O are also described.  相似文献   

11.
Copper(II) complexes were synthesized and characterized by means of elemental analysis, IR and visible spectroscopies, EPR and electrochemistry, as well as X-ray structure crystallography. The group consists of discrete mononuclear units with the general formula [Cu(II)(Hbpa)2](A)2·nH2O, where Hbpa=(2-hydroxybenzyl-2-pyridylmethyl)amine and A=ClO4 −, n=2 (1), CH3COO, n=3 (2), NO3 −, n=2 (3) and SO4 2−, n=3 (4). The structures of the ligand Hbpa and complex 1 have been determined by X-ray crystallography. Complexes 1–4 have had their UV–Vis spectra measured in both MeCN and DMF. It was observed that the compounds interact with basic solvents, such that molecules coordinate to the metal in axial positions in which phenol oxygen atoms are coordinated in the protonated forms. The values were all less than 1000 M−1 cm−1. EPR measurements on powdered samples of 1–3 gave g/A values between 105 and 135 cm−1, typical for square planar coordination environments. Complex 4·3H2O exhibits a behaviour typical for tetrahedral coordination. The electrochemical behaviour for complexes 1 and 2 was studied showing irreversible redox waves for both compounds.  相似文献   

12.
The coordination chemistry of the new bidentate nitrogen ligands 8-(2-pyridyl)quinoline (8-PQ) and 8-(6-methyl-2-pyridyl)quinoline (Me-8-PQ) towards palladium and platinum has been studied. Several (NN)Pd(R)Cl and (NN)Pd(alkene) complexes have been synthesized. The complex (8-PQ)Pd(Me)Cl has been characterised by a single crystal X-ray determination (crystal data triclinic space group ). A fast CO insertion occurs into the palladium-carbon bond of the complexes (NN)Pd(Me)Cl providing the (NN)Pd(C(O)Me)Cl complexes. For (8-PQ)Pd(C(O)Me)Cl an X-ray structure determination has been carried out (crystal data: monoclinic space group P21/c with a=9.084(4), B=10.179(3), C=16.400(3) Å, β=95.59(2)°, V=1509.2(9) Å3, R=0.043, Z=4). Unexpected in both molecular structures is the large dihedral angle between the plane of the bidentate nitrogen ligand and the coordination plane of the palladium. Both bidentate coordinating ligands 8-PQ and Me-8-PQ show a relatively large bite angle. A monodentate coordination mode has been observed for the complexes (NN)M(PEt3)Cl2 (M=Pd, Pt), as the pyridyl group of the ligand is coordinated to the metal while the quinoline group is dissociated from the metal, which is shown in the X-ray structure determination for the complex (8-PQ)Pd(PEt3)Cl2 (crystal data: monoclinic space group P21/a with A=15.736(2), B=7.782(1), C=18.255(3) Å, β=102.98(1)°, V=2178.3(6) Å3, R=0.062, Z=4).  相似文献   

13.
Novel ionic mixed-ligands complexes of the types cis- and trans-[Pt(pz)2(Ypy)2](NO3)2 (where Ypy is a pyridine derivative and pz = pyrazine) were synthesized and studied mainly in the solid state by IR spectroscopy and in aqueous solution by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The trans isomers with ligands containing a methyl group in ortho position on the pyridine ring could not be synthesized. The results of the solution NMR characterization have shown that the isolated compounds are pure. In 195Pt NMR, the cis complexes containing a methyl group in ortho positions were observed at lower field (average −2337 ppm) than the other cis compounds (average −2427 ppm), which is explained by the solvent effect. The trans isomers were observed at very slightly lower fields (average −2422 ppm) than the equivalent cis complexes (average −2427 ppm). In 1H NMR, the coupling constants 3J(195Pt-1HYpy) and 3J(195Pt-1Hpz) are larger in the cis compounds (∼40 Hz) than in the trans complexes (∼31 Hz). A few 4J(195Pt-1Hpz) were observed (∼16 Hz). In 13C NMR spectroscopy, the coupling constants 3J(195Pt-13Cpz) and 3J(195Pt-13CYpy) are also larger in the cis configuration (∼30 and ∼38 Hz, respectively) than in the trans isomers (∼20 Hz). One 4J(195Pt-13Cpz) could be calculated (17 Hz). The presence of the syn and anti rotamers were observed in all the cis complexes containing a pyridine derivative with a -CH3 group in ortho position. They were observed in 195Pt, 1H and 13C NMR spectroscopy. The proportion of the two rotamers is about 55% and 45%.  相似文献   

14.
The chloro complexes trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4, react with 1-alkynes HC---C---R in the presence of NEt3 to afford the corresponding acetylide derivatives trans-[Pt(Me) (C---C---R) (PPh3)2] (R = p-tolyl (1), Ph (2), C(CH3)3 (3)). These complexes, with the exception of the t-butylacetylide complex, react with the chloroalcohols HO(CH2)nCl (n = 2, 3) in the presence of 1 equiv. of HBF4 to afford the alkyl(chloroalkoxy)carbene complexes trans-[Pt(Me) {C[O(CH2)nCl](CH2R) } (PPh3)2][BF4] (R = p-tolyl, N = 2 (4), N = 3 (5); R=Ph, N = 2 (6)). A similar reaction of the bis(acetylide) complex trans-[Pt(C---C---Ph)2(PMe2Ph)2] with 2 equiv. HBF4 and 3-chloro-1-propanol affords trans-[Pt(C---CPh) {C(OCH2CH2CH2Cl)(CH2Ph) } (PMe2Ph)2][BF4] (7). T alkyl(chloroalkoxy)-carbene complex trans-[Pt(Me) {C(OCH2CH2Cl)(CH2Ph) } (PPh3)2][BF4] (8) is formed by reaction of trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4 in HOCH2CH2Cl, with phenylacetylene in the presence of 1 equiv. of n-BuLi. The reaction of the dimer [Pt(Cl)(μ-Cl)(PMe2Ph)]2 with p-tolylacetylene and 3-chloro-1-propanol yields cis-[PtCl2{C(OCH2CH2CH2Cl)(CH2C6H4-p-Me}(PMe2Ph)] (9). The X-ray molecular structure of (8) has been determined. It crystallizes in the orthorhombic system, space group Pna21, with a = 11.785(2), B = 29.418(4), C = 15.409(3) Å, V = 4889(1) Å3 and Z = 4. The carbene ligand is perpendicular to the Pt(II) coordination plane; the PtC(carbene) bond distance is 2.01(1) Å and the short C(carbene)-O bond distance of 1.30(1) Å suggests extensive electronic delocalization within the Pt---C(carbene)---O moietry.  相似文献   

15.
Reactions of ligands 1-ethyl-5-methyl-3-phenyl-1H-pyrazole (L1) and 5-methyl-1-octyl-3-phenyl-1H-pyrazole (L2) with [PdCl2(CH3CN)2 and K2PtCl4 gave complexes trans-[MCl2(L)2] (L = L1, L2). The new complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H and 13C{1H} NMR spectroscopies and X-ray diffraction. The NMR study of the complex [PdCl2(L1)2], in CDCl3 solution, is consistent with a very slow rotation of ligands around the Pd-N bond, so that two conformational isomers can be observed in solution (syn and anti). Different behaviour is observed for complexes [PdCl2(L2)2] and [PtCl2(L)2] (L = L1, L2), which present an isomer in solution at room temperature (anti). The crystal structure of [PdCl2(L1)2] complex is described, where the Pd(II) presents a square planar geometry with the ligands coordinated in a trans disposition.  相似文献   

16.
The reactivity of the cyclic primary aliphatic amines cyclopropyl-, cyclopentyl- and cyclohexylamine with cis- and trans-[PtCl2(NCMe)2], under the same experimental conditions, is compared. Whereas cis-[PtCl2(NCMe)2] yields the neutral diamidine compounds, the reactions with trans-[PtCl2(NCMe)2] take place either with addition or substitution processes yielding the neutral diamidine complexes trans-[PtCl2(Amidine)2], the monocationic trans-[PtCl(Amine)(Amidine)2]Cl and the dicationic trans-[Pt(Amine)2(Amidine)2]Cl2 salts. An NMR and ESI study indicate that the main species formed is the monocationic trans-[PtCl(Amine)(Amidine)2]Cl complex.The X-ray structure of is reported and its supramolecular arrangement is described.  相似文献   

17.
The trinuclear clusters [Pd3(μ-dppm)3(CO)]2+ and [PtPdCo(μ-dppm)2(CO)3(CNtBu)]+ exhibit a large and a small cavity, respectively, formed by the phenyl rings of the bridging diphosphine ligands. Their binding constants (K11) with halide ions (X) were obtained by UV-Vis spectroscopy. The binding ability varies as I > Br > Cl, and [Pd3(μ-dppm)3(CO)]2+ > [ptPdCo(μ-dppm)2-(CO)3(CNtBu)]+. The MO diagram for the related cluster [Pd2Co(μ-dppm)2(CO)4]+ has been addressed theoretically in order to predict the nature of the lowest energy electronic bands. For this class of compounds, the lowest energy bands are assigned to charge transfers from the Co center to the Pd2 centers.  相似文献   

18.
The fluorinated thioether compounds [C6H4Br-2-(CH2SRF)] (SRF = SC6F5 (1), SC6F4-4-H (2), SC6H4-2-F (3), SC6H4-3-F (4), SC6H4-4-F (5)) were synthesized and the reactivity of (1) was explored with transition metal complexes of the group 10. The results obtained indicate that the reactivity of these ligands is strongly dependent on the oxidation state of the metal center on the complex. Thus, products of the coordination of Pd(II) and Pt(II) to the sulfur moiety were obtained and unequivocally characterized by single crystal X-ray diffraction analyses. While spectroscopic evidence indicates that reaction of the Pt(0) compound [Pt(PEt3)3] leads to the formation of C–Br activation products, it is worth noting that similar reactions with Ni(0) and Pd(0) compounds only afford complex mixtures that in most of the cases indicate desulfurization of the ligands and decomposition of the metallic starting materials.  相似文献   

19.
The 1,3-oxazine complexes cis- and trans-[PtCl2{ C(R)OCH2CH2C}H22] (cis: R=CH3 (1a), CH2CH3 (2a), (CH3)3C (3a), C6H5 (4a); trans:R =CH3 (1b), C6H5 (4b)) were obtained in 51-71% yield by reaction in THF at 0 °C of the corresponding nitrile complexes cis- and trans-[PtCl2(NCR)2] with 2 equiv. of OCH2CH2CH2Cl, generated by deprotonation of 3-chloro-1-propanol with n-BuLi. The cationic nitrile complexes trans-[Pt(CF3)(NCR)(PPh3)2]BF4 (R=CH3, C6H5) react with 1 equiv, of OCH2CH2CH2Cl to give a mixture of products, including the corresponding oxazine derivatives trans-[Pt(CF3){ CH2}(PPh3)2]BF4 (5 and 6), the chloro complex trans- [Pt(CF3)Cl(PPh3)2] and free oxazine H2. For short reaction times (c. 5–15 min) the oxazine complexes 5 and 6 could be isolated in modest yield (37–49%) from the reaction mixtures and they could be separated from the corresponding chloro complex (yield 40%) by taking advantage of the higher solubility of the latter derivative in benzene. For longer reaction times (> 2 h), trans-[Pt(CF3)Cl(PPh3)2] was the only isolated product. Complex 6 was crystallographically characterized and it was found to contain also crystals of trans- [PtCl{ H2}(PPh3)2]BF4, which prevented a more detailed analysis of the bond lengths and angles within the metal coordination sphere. The 1,3-oxazine ring, which shows an overall planar arrangement, is characterized by high thermal values of the carbon atoms of the methylene groups indicative of disordering in this part of the molecule in agreement with fast dynamic ring processes suggested on the basis of 1H NMR spectra. It crystallizes in the trigonal space group P , with a=22.590(4), b=15.970(3) Å, γ=120°, V=7058(1) Å3 and Z=6. The structure was refined to R=0.059 for 3903 unique observed (I3σ(I)) reflections. A mechanism is proposed for the conversion of nitrile ligands to oxazines in Pt(II) complexes.  相似文献   

20.
The preparation, crystal structures and magnetic properties of three copper(II) compounds of formulae [Cu2(dmphen)2(dca)4] (1), [Cu(dmphen)(dca)(NO3)]n (2) and [Cu(4,4-dmbpy)(H2O)(dca)2] (3) (dmphen=2,9-dimethyl-1,10-phenanthroline, dca=dicyanamide and 4,4-dmbpy=4,4-dimethyl-2,2-bipyridine) are reported. The structure of 1 consists of discrete copper(II) dinuclear units with double end-to-end dca bridges whereas that of 2 is made up of neutral uniform copper(II) chains with a single symmetrical end-to-end dca bridge. Each copper atom in 1 and 2 is in a distorted square pyramidal environment: two (1) or one (2) nitrile-nitrogen atoms from bridging dca groups, one of the nitrogen atoms of the dmphen molecule (1 and 2) and either one nitrile-nitrogen from a terminal dca ligand (1) or a nitrate-oxygen atom (2) build the equatorial plane whereas the second nitrogen atom of the heterocyclic dmphen fills the axial position (1 and 2). The copper-copper separations through double (1) and single (2) end-to-end dca bridges are 7.1337(7) (1) and 7.6617(7) (2). Compound 3 is a mononuclear copper(II) complex whose structure contains two neutral and crystallographically independent [Cu(4,4-dmbpy)(H2O)(dca)2] molecules which are packed in two different layer arrangements running parallel to the bc-plane and alternating along the a-axis. The copper atoms in both molecules have slightly distorted square pyramidal surroundings with the two nitrogen atoms of the 4,4-dmbpy ligand and two dca nitrile-nitrogen atoms in the basal plane and a water oxygen in the apical position. A semi co-ordinated dca nitrile-nitrogen from a neighbour unit [2.952(6) Å for Cu(2)-N] is in trans position to the apical water molecule in one of the two molecules, this feature representing part of the difference in supramolecular connections in the alternating layers referred to above. Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K reveal the occurrence of weak antiferromagnetic interactions through double [J=−3.3 cm−1 (1), ] and single [J=−0.57 cm−1 (2), ] dca bridges and across intermolecular contacts [θ=−0.07 K (3)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号