首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

2.
Synthesis of new bichromophoric di- and pentanuclear complexes 2-7 by datively binding (bpy)2RuII, (phen)2RuII and Cp (PPh3)RuII units to the periphery of [Co(OBTTAP)], 1, and their spectroscopic properties are described. IR, 1H NMR, UV-Vis, and mass spectral data were used for their characterization. Relative intensities and positions of the Soret and Q-bands absorptions in the di- and pentanuclear complexes were observed shifted vis-à-vis that in the precursor complex [Co(OBTTAP)], 1. These complexes particularly, those possessing [Co(OBTTAP)] and (bpy)2RuII/(phen)2RuII units, exhibited efficient inter-component electronic excitation energy transfer in their fluorescence excitation-emission spectra, that are suggestive of a high degree of inter-component electronic interaction in them. Also, the electrode activity of the complexes improved upon binding of the peripheral units and they exhibited multiple one-electron reversible oxidation waves in the cyclic voltammograms. These effects have been explained in terms of dπ(S)-dπ(Ru) interactions.  相似文献   

3.
Complex fac-[RuCl3(NO)(P-N)] (1) was synthesized from the reaction of [RuCl3(H2O)2(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl3(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer,cis-[RuCl3(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo- or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated.The complexes were characterized by NMR (31P{1H}, 15N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The 31P{1H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The 1H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH2Cl2 solution presented 1866 and 1872 cm−1 for (1) and 1841 and 1860 cm−1 for (2). Electrochemical analysis revealed a irreversible reduction attributed to RuII-NO+ → RuII-NO0 at −0.81 V and −0.62 V, for (1) and (2), respectively; the process RuII → RuIII, as expected, is only observed around 2.0 V, for both complexes.Studies were conducted using 15NO and both complexes were isolated with 15N-enriched NO. Upon irradiation, the complex fac-[RuCl3(NO)(P-N)] (1) does not exchange 14NO by 15NO, while complex mer,trans-[RuCl3(NO)(P-N)] (2) does. Complex mer,trans-[RuCl3(15NO)(P-N)] (2′) was obtained by direct reaction of mer,trans-[RuCl3(NO)(P-N)] (2) with 15NO and the complex fac-[RuCl3(15NO)(P-N)] (1′) was obtained by thermal-isomerization of mer,trans-[RuCl3(15NO)(P-N)] (2′).DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%).  相似文献   

4.
A series of platinum(II) complexes with 6,8-dimethylimidazo[1,5-a]-1,3,5-triazin-4(3H)-one (6,8-DiMe-4-O-IMT) (I) and 6,8-dimethyl-2-thioxo-2,3-dihydroimidazo[1,5-a]-1,3,5-triazin-4(1H)-one (6,8-DiMe-4-O-2-S-IMT) (II) of formula trans-[PtCl2(dmso)(6,8-DiMe-4-O-IMT)] (1a) and trans-[PtCl2(dmso)(6,8-DiMe-4-O-2-S-IMT)] (2a) have been prepared and characterized with 1H, 13C, 15N, 195Pt NMR and IR. Significant 15N NMR upfield coordination shifts (81-96 ppm) of N(7) atom indicate this nitrogen atom as a coordination site. The multinuclear NMR and IR spectra indicate the square planar geometry with N(7) bonded heterocycles, S-bonded dimethylsulfoxide and two trans chloride anions. The platinum(II) complexes were tested for their antiproliferative activity in vitro against the cells of four human cell lines: SW707 rectal adenocarcinoma, A549 non-small cell lung carcinoma, T47D breast cancer and HCV29T bladder cancer. The activity of (1a, 2a) was lower than that of cisplatin.  相似文献   

5.
A series of (μ-oxo)bis(μ-acetato)diruthenium(III) complexes containing two pyridine (py) ligands and varied N-heterocyclic ligands in the positions trans and cis to μ-O, respectively, have been prepared to study py/py-d5 exchange reactions using 1H NMR spectroscopy. The diruthenium(III) complexes under investigation are [Ru2(μ-O)(μ-CH3COO)2(py)6](PF6)2 (1), [Ru2(μ-O)(μ-CH3COO)2(bpy)2(py)2](PF6)2 (2), [Ru2(μ-O)(μ-CH3COO)2(acpy)4(py)2](FF6)2 (3), and [Ru2(μ-O)(μ-CH3COO)2(dmbpy)2(py)2](PF6)2 (4), where bpy=2,2′-bipyridine, acpy=4-acetylpyridine, and dmbpy=4,4′-dimethyl-2,2′-bipyridine. Pseudo-first order rate constants for the ligand-exchange reactions are 10−6−10−5 s−1 for 1-4 in CD3CN at 298 K. It is found that the rate of the py/py-d5 exchange reactions is controlled by the electronic nature of the cis-oriented ancillary ligands, while the exchange mechanisms are tuned principally by the ligand steric factors. The activation parameters (ΔH and ΔS) indicate that exchange reactions proceed through the dissociative (D) or the interchange dissociative (Id) mechanism for 1 and 3. Negative ΔS values observed for 2 and 4 suggest a significant contribution of incoming ligands to the exchange pathway. The kinetic and thermodynamic parameters for the diruthenium series and the corresponding data for Ru-based oxo bridged trinuclear complexes established previously are compared and discussed.  相似文献   

6.
Pyrazole-3,5-dicarboxylate-bridged dinuclear ruthenium(II) and osmium(II) complexes of 2,2-bipyridine of composition [(bpy)2Ru(pzdc)Ru(bpy)2](ClO4) · H2O (1) and [(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2) have been obtained in high yield and have been separated to their homochiral (ΛΛ/ΔΔ) rac (1a, 2a) and heterochiral (ΛΔ/ΔΛ) meso (1b, 2b) diastereoisomers. The distinctive structural features of these diastereoisomers have been characterized by 1-D and 2-D 1H NMR spectroscopy. The X-ray crystal structure of rac-[(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2a) has been determined. The electrochemical and electronic spectral studies have established that there remain difference in properties and hence difference in intermetallic communication between the diastereoisomeric forms in each case.  相似文献   

7.
A new class of mononuclear metal complexes with 1-methylimidazole-2-aldoximate (miao) has been synthesized and characterized: trans-NiII(Cl)2(Hmiao)2 (1), trans-NiII(miao)2(py)2 (2), NO-trans-NiII(miao)2(phen) (3), and NO-trans-FeII(miao)2(phen) (4). The crystal structures of 2, 3, and 4 have been determined by single-crystal X-ray crystallography. Compound 1 having the protonated miao ligand (i.e., Hmiao) is a precursor for synthesizing 2 and 3. Compound 2 is an octahedral NiII complex surrounded by two miao bidentate ligands and two monodentate ligands of pyridine in a trans-arrangement. Compound 3 is a cis-type octahedral NiII complex with two miao ligands and a bidentate ligand of 1,10-phenanthroline, in which the ligand arrangement around NiII center is found in an NO-trans form. Compound 4 is an isostructural FeII derivative of 3. Compounds 1, 2, and 3 exhibit paramagnetic nature with an S = 1 spin and a positive zero-field splitting, among which it for 3 is overlapped with intermolecular ferromagnetic interaction (zJ/kB = +0.16 K). Compound 4 is diamagnetic due to the existence of low-spin FeII ion.  相似文献   

8.
The heteronuclear water-soluble and air-stable compounds [M(H2O)5M′(dipic)2] · mH2O (M/M′ = CuII/CoII (1), CuII/NiII (2), CuII/ZnII (3), ZnII/CoII (4), NiII/CoII (5), m = 2-3; H2dipic = dipicolinic acid) have been prepared by self-assembly synthesis in aqueous solution at room temperature, and characterized by IR, UV-Vis and atomic absorption spectroscopies, elemental and X-ray diffraction single crystal (for 1 and 2) analyses. 1-5 represent the first examples of heteronuclear dipicolinate compounds with 3d metals. Extensive H-bonding interactions involving all aqua ligands, dipicolinate oxygens and lattice water molecules further stabilize the dimetallic units by linking them to form three-dimensional polymeric networks.  相似文献   

9.
The synthesis and crystal structures of two new phosphine ruthenium polypyridine complexes [Ru(tpy)(bpy)(PR3)]2+ with R = Ph (1), Cy (2) are reported. Their geometrical parameters are intimately related to the electronic and steric properties of the phosphine ligand. Electrochemical and UV-Vis analyses showed the influence of the substituents of the coordinated phosphorus atom on the RuIII/RuII potential and on the frontier orbitals energy gap. The results are discussed in terms of steric effects and net donor power of the phosphine ligands.  相似文献   

10.
The trinuclear [{RuII(bpy)2(bpy-terpy)}2CoII]6+ complex (16+) in which a Co(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH3CN. The cyclic voltammetry exhibits two successive reversible oxidation processes, corresponding to the CoIII/CoII and RuIII/RuII redox couples at E1/2 = −0.06 and 0.91 V vs Ag/Ag+ 10 mM, respectively. The one-electron oxidized form of the complex, [{RuII(bpy)2(bpy-terpy)}2CoIII]7+ (17+) obtained after exhaustive electrolysis carried out at 0.2 V is fully stable. 16+ and 17+ are only poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine centre to the cobalt subunit leads to a strong quenching of the RuII excited state by an intramolecular process. Luminescence lifetime experiments carried out at different temperatures indicate that the transfer is more efficient for 17+ compare to 16+ due to lower activation energy. Continuous irradiation of 17+ performed at 405 nm in the presence of P(Ph)3 acting as sacrificial electron donor leads to its quantitative reduction into 16+, whereas similar experiment starting from 16+ with a sulfonium salt as sacrificial electron acceptor converts 16+ into 17+ with a slower rate and a maximum yield of 80%. These photoinduced electron transfers were followed by UV-Visible spectroscopy and compared with those obtained with a simple mixture of both mononuclear parent complexes i.e. [RuII(bpy)3]2+ and [CoII(tolyl-terpy)2]2+ or [CoIII(tolyl-terpy)2]3+ (tolyl-terpy = 4′-(4-methylphenyl)-2,2′:6′,2′′-terpyridine).  相似文献   

11.
For reactions of [{RuCl(bpy)2}2(μ-BL)]2+ (bpy = 2,2′-bipyridine, BL = H2N(CH2)nNH2 (n = 4-8, 12), [Ru2-BL]2+) with mononucleotides, the MLCT absorption bands of [Ru2-BL]2+ blue-shifted with hyperchromism for GMP and hypochromism for TMP with time. Reactions of [Ru2-BL]2+ with GMP or TMP proceed via initial Cl ions replacement by coordination to N7 of GMP and N3 of TMP, respectively. In competition binding experiments for [Ru2-BL]2+ with GMP versus TMP, only GMP selectively coordinated to ruthenium(II). For reactions with calf thymus (CT) DNA, [Ru2-BL]2+ complexes selectively bind to guanine residues of DNA. The higher degrees of binding of [Ru2-BL]2+ to CT-DNA were observed with increasing n values for H2N(CH2)nNH2, which may be explained by the length of the bridging ligands. Studies on the inhibition of the restriction enzyme Acc I revealed that [Ru2-BL]2+ complexes appear to be covalently favorable for the type of difunctional binding. In addition, it is very interesting to observe that circular dichroism spectroscopy of the supernatants obtained following the reactions of CT-DNA with racemic [Ru2-BL]2+ show enrichments of the solutions in the ΔΔ isomers, demonstrating preferences of the ΛΛ isomers for covalent binding to CT-DNA.  相似文献   

12.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

13.
Two Ni(II) pyridine-2-aldoximate complexes, Ni(pao)2(bpy) (1) and Ni(pao)2(phen) (2) (pao=pyridine-2-aldoximate, bpy=2,2-bipyridine, phen=1,10-phenanthroline), were synthesized via the deprotonation of NiCl2(Hpao)2 in methanol followed by the addition of bidentate ligands of 2,2-bipyridine and 1,10-phenanthroline. Crystallization in CHCl3 gave block-type crystals of 1 and 2 in high yields. The mononuclear structure surrounded by three bidentate ligands, i.e., two pao and one bpy or phen, was revealed by X-ray crystallography: 1 crystallizes in monoclinic space group P21/c with cell dimensions of a=13.457(3) Å, b=14.493(3) Å, c=19.104(4) Å, β=108.681(3)°, Z=4, and 2 crystallizes in monoclinic space group P21/n with cell dimensions of a=14.235(5) Å, b=12.018(4) Å, c=20.696(7) Å, β=110.304(4)°, Z=4. 1 and 2 each have two oximate groups (pao), with an NO-trans arrangement around the NiII ion. Complexes 1 and 2 are racemic, namely, each molecule has a chiral center of Δ or Λ, thereby forming NO-trans-Δ and -Λ geometries in the solid state. Magnetic measurements revealed a paramagnetic S=1 spin state with a positive zero-field splitting parameter.  相似文献   

14.
The synthesis, characterisation and solution behaviour of a series of octahedral complexes SnCl4·2L (L = R2NP(O)(OCH2CF3)2; R = Me (1); Et (2) or L = P(O)(OCH2Rf)3; Rf = CF3 (3); C2F5 (4)) are described. Complexes 1-4 were prepared from SnCl4 and 2 equiv. of the ligand, L, in anhydrous CH2Cl2 solution. The adducts have been characterised by multinuclear (1H, 31P and 119Sn) NMR, IR spectroscopy and elemental analysis. In dichloromethane solution, the NMR data showed the presence of a mixture of cis and trans isomers for 1 and 2 and only the cis isomer for 3 and 4. The difference could be interpreted in terms of the electronic effects of the substituents on the phosphorus atom of the ligand. In addition, the solution structure of the complexes studied by variable temperature 31P-{1H} and 1H NMR in the presence of excess ligand indicated that the ligand exchange on the cis isomer dominates the chemistry. The metal-ligand exchange barriers were estimated to be 13.38 and 11.39 kcal/mol for 1 and 3, respectively. The results are discussed and compared with those previously reported for the related hexamethylphosphoramide adduct, SnCl4·2HMPA.  相似文献   

15.
Cyclometalated RuII derivatives of 2-phenylpyridine (Hphpy) [Ru(phpy)(bpy)2]Cl (1a) and [Ru(phpy)(phen)2]Cl (1b) (bpy is 2,2′-bipyridine, phen is 1,10-phenanthroline) behave as noncompetitive inhibitors of glucose oxidase from Aspergillus niger in the enzyme-catalyzed oxidation of d-glucose by O2 into the corresponding lactone at pH 5.0 and 25 °C. The enzymatic activity has been measured by monitoring the O2 consumption. The inhibition constants K i are 0.036 and 0.017 M for 1a and 1b, respectively, indicating that 1b inhibits the enzymatic activity more efficiently than 1a. The well-known coordination compound [Ru(bpy)3]Cl2 (2) behaves, in contrast, as a competitive inhibitor, with K i = 0.018 M under the same conditions. The monophasic consumption of O2 in the case of 1a, 1b, and 2 is replaced by a distinct two-phase kinetics in the presence of the cyclometalated RuIII compound [Ru(phpy)(bpy)2]Cl2 (3), which was obtained from 1a in the presence of a large excess of H2O2 and the iron TAML activator. Interestingly, the rates of the first and the second phases are influenced by 3 in a different way. The rate of the first phase is noticeably higher in the presence of RuIII, although the dependence is nonmonotonic and maximal acceleration is observed at the lowest loadings of 3. The rate of the second phase decreases monotonically on increasing the concentration of the ruthenium complex in solution. The nonmonotonic action of 3 was confirmed by using the doubly cyclometalated RuIII derivative [Ru(phpy)2(bpy)]Cl. The diverse rate variations induced by 3 accounted for acceleration by RuIII of the O2 reduction by the reduced form of glucose oxidase during the first phase, which ceases after the enzymatic reduction of RuIII to the RuII species, the latter behaving similarly to 1a as the inhibitor of the enzyme.  相似文献   

16.
The Dawson polyoxotungstate (POM)-based, organometallic ruthenium(II) complex, [{(C6H6)Ru}P2W15V3O62]7−, was synthesized as two materials, i.e. 1 · 2Bu4NCl and 1 · 1Bu4NCl (1 = (Bu4N)7[{(C6H6)Ru}P2W15V3O62]), which contained two positional isomers a and b as major or minor species. In isomer a with the overall Cs symmetry, the (C6H6)Ru2+ group was supported on one vanadium(V) octahedral site (two V-O-V bridging oxygens and one OV terminal oxygen) of the three edge-shared vanadium(V) octahedra (V3 site, B-site) in the Dawson POM-support [1,2,3-P2W15V3O62]9−, whereas in the other isomer b with the overall C3v symmetry, the (C6H6)Ru2+ group was supported on the center of the V3 site in the Dawson POM-support. Material 1 · 2Bu4NCl was prepared by a stoichiometric reaction in CH2Cl2 at ambient temperature of the Dawson POM-support (Bu4N)9[1,2,3-P2W15V3O62] with the precursor [(C6H6)RuCl2]2, whereas material 1 · 1Bu4NCl was prepared by a stoichiometric reaction in CH3CN under refluxing conditions. The temperature-varied 31P NMR spectra revealed that b was thermodynamically more stable thana.  相似文献   

17.
The activity of homobimetallic ruthenium alkylidene complexes, [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(PCy3)] [Ru-I] and [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(IPr)] [Ru-II], on intermolecular [2+2+2] cyclotrimerisation reactions of monoynes has been investigated for the first time. It was found that these complexes can catalyse the chemo and regioselective cyclotrimerisation reactions of alkynes at both 25 and 50 °C in polar, aprotic solvents. The catalytic activity of [Ru-I] and [Ru-II] was compared to other well-known ruthenium catalysts such as Grubbs first generation catalyst [RuCl2(CHPh)(PCy3)2] [Ru-III], [RuCl(μ-Cl)(p-cymene)]2 [Ru-IV] and [RuCl2(p-cymene)PCy3] [Ru-V] complexes. To examine the effect of the steric hinderance of substrates on the regioselectivity of the reaction, a series of sterically hindered silicon containing alkynes (1a, 1b, 1c) were used. It was shown that the isomeric product distribution of the reaction shifts from 1,2,4-trisubstituted arenes to 1,3,5-trisubstituted arenes as the steric hinderance on the substrates increases. These homobimetallic ruthenium alkylidene complexes also catalysed regio- and chemo-selective cross-cyclotrimerisation reactions between silicon-containing alkynes (1a, 1b, 1c) and aliphatic alkynes (1d-g).  相似文献   

18.
Previous work has shown that mono-oxygenation of Ru(bpy)2(N,N′-dimethyldithiocarbamate)+, 1, yields two different linkage isomers: S,S-bound 2a and O,S-bound 2b, as well as a stable dioxygenate, Ru(bpy)2(N,N-dimethylthiocarbamate-sulfinate-S,S)+, 3. In this report, the interconversion of the two peroxydithiocarbamate isomers was investigated using photolysis and thermal activations. The O,S-bound 2b undergoes phototriggered linkage isomerization to form the less stable S,S-bound 2a at low temperatures in non-coordinating solvents. The more reactive S,S-bound 2a then converts to O,S-bound 2b by a thermal isomerization at moderate temperatures in polar solvents. The different solvent and temperature dependences suggest distinct pathways for the two isomerizations.  相似文献   

19.
[RuIV(tpy)(pic)(O)]+ (1) was synthesized by chemical oxidation of the corresponding aqua-complex [RuII(tpy)(pic)(H2O)]+ (2) and characterized by analytical, spectroscopic (UV-vis and IR) and magnetic moment studies. Complex 1 effected epoxidation of styrene and substituted styrenes, cis- and trans-stilbenes and cyclohexene, in CH3CN at room temperature. Epoxides were found to be the major product for styrenes and stilbenes, whereas, the oxidation of cyclohexene yielded allylic oxidation product. Detailed kinetic studies were performed under pseudo-first order conditions of excess alkene concentrations. A working mechanism in agreement with the rate and activation parameters is presented, and the results are discussed in reference to the data reported for the alkene oxidation by relevant RuIVO system in CH3CN.  相似文献   

20.
Reduction of RuQ3 (1a, Q = 8-quinolinolato) with Zn/Hg in the presence of various π-acceptor ligands in ethanol affords RuQ2L2 (L2 = (dimethylsulfoxide)2 (2); (4-picoline)2 (3); N,N′-dimethyl-1,4-diazabuta-1,3-diene, dab (4); cyclooctadiene, COD (5); norborna-2,5-diene, nbd (6)). Compound 6 is isolated as an equimolar mixture of cis,trans (6a) and trans,cis (6b) isomers, which can be separated by column chromatography. DFT calculations have been performed on 6a and 6b. Oxidation of 3 and 6b affords the corresponding ruthenium(III) species 7 and 8, respectively. The structures of 2, 3, 4 and 6 have been determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号