首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
Acetonitrile is easily displaced from [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (R = 2,6-Me2C6H3 (Xyl) (1a); Me (1b)) upon stirring in THF at room temperature in the presence of [NBu4][SCN]. The resulting complexes trans-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (trans-2a); Me (trans-2b)) are completely isomerised to cis-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (cis-2a); Me (cis-2b)) when heated at reflux temperature. Similarly, the complexes cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(NCO)(Cp)2] (M = Fe, R = Me (4a); M = Ru, R = Xyl (4b); M = Ru, R = Me (4c)) and cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(N3)(Cp)2] (M = Fe, R = Xyl (5a); M = Fe, R = Me (5b); M = Ru, R = Xyl (5c)) can be obtained by heating at reflux temperature a THF solution of [M2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (M = Fe, R = Xyl (1a); M = Fe, Me (1b); M = Ru, R = Xyl (1c); M = Ru, R = Me (1d)) in the presence of NaNCO and NaN3, respectively. The reactions of 5 with MeO2CCCCO2Me, HCCCO2Me and (NC)(H)CC(H)(CN) afford the triazolato complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3C2(CO2Me)2}(Cp)2] (M = Fe, R = Xyl (6a); M = Fe, R = Me (6b); M = Ru, R = Xyl (6c)), [M2{μ-CN(Me)(R)}(μ- CO)(CO){N3C2(H)(CO2Me)}(Cp)2] (M = Fe, R = Me (7a); M = Ru, R = Xyl (7b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3C2(H)(CN)}(Cp)2] (8), respectively. The asymmetrically substituted triazolato complexes 7-8 are obtained as mixtures of N(1) and N(2) bonded isomers, whereas 6 exists only in the N(2) form. Methylation of 6-8 results in the formation of the triazole complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(CO2Me)2}(Cp)2][CF3SO3] (9), [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3(Me)C2(H)(CO2Me)}(Cp)2][CF3SO3] (M = Fe, R = Me (10a); M = Ru, R = Xyl (10b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(H)(CN)}(Cp)2][CF3SO3], 11. The crystal structures of trans-2b, 4b · CH2Cl2, 5a, 6b · 0.5CH2Cl2 and 8 · CH2Cl2 have been determined.  相似文献   

2.
The reaction of [Ru(CO)2Cl2]n with bis(2-pyridylmethyl)amine (bpma) in refluxing ethanol followed by anion exchange yields two products: cis,fac-[Ru(bpma)(CO)2Cl]PF6 (1a, 71%) and trans,fac-[Ru(bpma)(CO)2Cl]PF6 (1b, 29%). Reaction of 1a with AgBF4 in acetone, followed by acetonitrile and then anion exchange gave cis,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2a). In the same way, 1b afforded trans,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2b). Reaction of depolymerized [Ru(CO)2Cl2]n with bpma in ethanol at room temperature afforded cis,cis-[Ru(η2-bpma)(CO)2Cl2] (3). In refluxing ethanol, 3 was converted to cis,fac-[Ru(bpma)(CO)2Cl]Cl (1a-Cl). Heating 3 in chlorobenzene afforded 1b-Cl, exclusively; heating 3 in ethylene glycol gave mainly 1a-Cl. Heating 1a-Cl in ethanol resulted in no isomerization, but heating in chlorobenzene gave a mixture of 3 and 1b-Cl. Anion exchange for PF6 with 1a-Cl and 1b-Cl afforded 1a and 1b, respectively, whereas anion exchange for BPh4 afforded 1a-BPh4. Compounds 1a, 1b, 2a and 3 have been structurally characterized.  相似文献   

3.
cis,trans-Fe(CO)2(PMe3)2(p-Y-C6H4)X [X=Br, Y=H (4a), MeO (4b), Cl (4c), F (4d), Me (4e); X=I, Y=H (5); X=Cl, Y=H (6)] and cis,trans-Fe(CO)2(PMe3)2(σ-CHCH2)X [X=Br (7); X=I (8); X=Cl (9)] are prepared by reacting dihalide complexes cis,trans,cis- Fe(CO)2(PMe3)2X2 [X=Br (1), X=I (2), X=Cl (3)] with Grignard reagents p-Y-C6H4-MgBr (Y=H, OMe, Cl, F, Me) or CH2CH-MgBr and with lithium reagents PhLi, CH2CH-Li. With both reagents, the reaction proceeds following two parallel pathways: one is the metallation reaction which yields alkyl derivatives, the other affords 17 electron complexes [Fe(CO)2(PMe3)2X] via monoelectron reductive elimination. The influence of the halides and organometallic reagents on the yield of the metallation reaction is discussed. The solution structure of the complexes is assigned on the basis of IR and 1H, 13C, 19F, 31P NMR spectra. The solid state structure of complexes 4a, 5 and 6 is determined by single crystal X-ray diffractometric methods.  相似文献   

4.
Two hitherto unknown mixed-ligand tris chelated complexes containing 2-aminothiophenolate, [Et4N]2[MIV(NH-(C6H4)-S)(mnt)2] (M = Mo, 1a; W, 2a) and two mixed-ligand tris chelate complex containing N,N-diethyldithiocarbamate, [Et4N]2[MIV(Et2NS2)(mnt)2] (M = Mo, 1b; W, 2b) have been synthesized and characterized structurally. Although these complexes are supposed to be quite similar to the well-known symmetric tris chelate complexes of maleonitriledithiolate (mnt), [Et4N]2[MIV(mnt)3] (M = Mo, 1c; W, 2c), but display both trigonal prismatic and distorted trigonal prismatic geometry in their crystal structure indicating the possibility of an equilibrium between these two structural possibilities in solution. Unlike extreme stability of 1b, 2b, 1c and 2c, both 1a and 2a are highly unstable in solution. In contrast to one reversible reduction in case of 1b and 2b, 1a and 2a exhibited no possible reduction up to −1.2 V and two sequential oxidation steps which have been further investigated with EPR study. Differences in stability and electrochemical behavior of 1a, 1b, 2a and 2b have been correlated with theoretical calculations at DFT level in comparison with long known 1c and 2c.  相似文献   

5.
The silver(I) salts [AgOR] (3a, R = C9H6N; 3b, R = C6H4-2-CHO, 3c, R = C6H4-2-Cl; 3d, R = C6H4-2-CN; 3e, R = C6H4-2-NO2) are accessible by the stoichiometric reaction of [AgNO3] (1) with HOR (2a, R = C9H6N; 2b, R = C6H4-2-CHO; 2c, R = C6H4-2-Cl; 2d, R = C6H4-2-CN; 2e, R = C6H4-2-NO2) in presence of NEt3. Treatment of 3a-3e with PnBu3 (4), P(OMe)3 (5a) or P(OCH2CF3)3 (5b) in the ratios of 1:1 and 1:2, respectively, produced complexes [LmAgOR] (L = PnBu3, = 1: 6a, R = C9H6N; 6b, R = C6H4-2-CHO; 6c, R = C6H4-2-Cl; 6d, R = C6H4-2-CN; 6e, R = C6H4-2-NO2. = 2: 7a, R = C9H4; 7b, R = C6H4-2-CHO; 7c, R = C6H4-2-Cl; 7d, R = C6H4-2-CN; 7e, R = C6H4-2-NO2. L = P(OMe)3, = 1: 8a, R = C6H4-2-CHO; 8b, R = C6H4-2-NO2. = 2: 9, R = C6H4-2-NO2. L = P(OCH2CF3)3, = 1: 10, R = C6H4-2-NO2). Based on TGA, temperature-programmed and in situ molecular beam mass spectrometry metal-organic 7e was applied as CVD precursor in the deposition of silver onto glass substrates. The resulting silver films were characterized by XRD. The SEM image of a film grown from 7e at 350 °C showed a homogeneous surface with grain sizes of 40 nm. The molecular structures of 8b and 10 in the solid state were determined. They are isostructural and are cubane-like structured. Low-temperature 31P{1H} NMR studies showed that the title complexes are dynamic in solution and exchange at room temperature their ligands.  相似文献   

6.
[Rh(CO)2Cl]2 reacts with two mole equivalent of 2-acetylpyridine (a), 3-acetylpyridine (b) and 4-acetylpyridine (c) to afford chelate [Rh(CO)Cl(η2-N∩O)] (1a) and non-chelate [Rh(CO)2Cl(η1-N∼O)] (1b, 1c) complexes, where, N∩O = a, N∼O = b, c. Oxidative addition (OA) of 1a-1c with CH3I and C2H5I yields penta coordinate rhodium(III) complexes, [Rh(COR)ClI(η2-N∩O)] {R = -CH3 (2a); -C2H5 (3a)} and [Rh(COR)(CO)ClI(η1-N∼O)] {R = -CH3 (2b, 2c); -C2H5 (3b, 3c)}. Kinetic study for the reaction of 1a-1c with CH3I indicates a pseudo-first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester was evaluated at different initial CO pressures 5, 10 and 20 bar at ∼25 °C and higher turn over numbers (TON = 1581-1654) were obtained compared to commercial Monsanto’s species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature = 130 ± 1 °C, pressure = 15-32 bar, rpm = 450, time = 1 h and catalyst: substrate = 1: 1900.  相似文献   

7.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

8.
The new diiron alkynyl methoxy carbene complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CCR′}(Cp)2]+ (R = 2,6-Me2C6H3 (Xyl), R′ = Tol, 3a; R = Xyl, R′ = Ph, 3b; R = Xyl, R′=Bun, 3c; R = Xyl, R′=SiMe3, 3d; R = Me, R′ = Tol, 3e; R = Me, R′ = Ph, 3f) are obtained in two steps by addition of R′CCLi (R′ = Tol, Ph, Bun, SiMe3) to the carbonyl aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2]+ (R = Xyl, 1a; Me, 1b), followed by methylation of the resulting alkynyl acyl compounds [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(O)CCR′}(Cp)2] (R = Xyl, R′ = Tol, 2a; R = Xyl, R′ = Ph, 2b; R = Xyl, R′ = Bun, 2c; R = Xyl, R′ = SiMe3, 2d; R = Me, R′ = Tol, 2e; R = Me, R′ = Ph, 2f). Complexes 3 react with secondary amines (i.e., Me2NH, C5H10NH) to give the 4-amino-1-metalla-1,3-dienes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CHC(R′)(NMe2)}(Cp)2]+ (R = Xyl, R′ = Tol, 4a; R = Xyl, R′ = Ph, 4b; R = Me, R′ = Ph, 4c) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(Tol)(NC5H10)}(Cp)2]+, 5. The addition occurs stereo-selectively affording only the E-configured products. Analogously, addition of primary amines R′NH2 (R′ = Ph, Et, Pri) affords the 4-(NH-amino)-1-metalla-1,3-diene complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(R)(NHR′)}(Cp)2]+ (R = Ph, 6a; Et, 6b; Pri, 6c). In the case of 6a, only the E isomer is formed, whereas a mixture of the E and Z isomers is present in the case of 6b,c, with prevalence of the latter. Moreover, the two isomeric forms exist under dynamic equilibrium conditions, as shown by VT NMR studies. Complexes 6 are deprotonated by strong bases (e.g., NaH) resulting in the formation of the neutral vinyl imine complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(NR)(Tol)}(Cp)2] (R = Ph, 7a; Et, 7b; Pri, 7c); the reaction can be reverted by addition of strong acids. X-ray crystal structures have been determined for 3a[CF3SO3] · Et2O, 4c[CF3SO3], 6a[BF4] · CH2Cl2, 6c[CF3SO3] · 0.5Et2O and 7a · CH2Cl2.  相似文献   

9.
The syntheses of several ethynyl-gold(I)phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(CCC6H4CCC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru3(CO)10(μ-dppm)] to give the heterometallic clusters [Ru3(μ-AuPPh3)(μ-η12-C2C6H4CCC6H4X)(CO)7(μ-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps.  相似文献   

10.
Cyclopentadienyltricarbonyl tungsten selenocarboxylate complexes CpW(CO)3SeCOR (1) (R = C6H5 (a), 3,5-C6H3(NO2)2 (b), 3-C6H4NO2 (c), 4-C6H4NO2 (d), CH3 (e)) and cyclopentadienyltricarbonyl tungsten selenosulfonate complexes CpW(CO)3SeSO2R (2) (R = C6H5 (a), 4-C6H4CH3 (b), 4-C6H4OCH3 (c), 4-C6H4Cl (d), CH3 (e)) have been prepared from the tungsten anion [CpW(CO)3Se] and acid- or sulfonyl chlorides respectively. The new complexes (1 and 2) have been characterized by IR, 1H NMR spectroscopies as well as elemental analysis. The crystal structure of CpW(CO)3SeCO-3-C6H4NO2 (1c) was determined.  相似文献   

11.
4-aryl-2-amino-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitrile (1), 4-aryl-2-oxo-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitriles (2a-2c), 3-(6-aryl-1,2,5,6- tetrahydro-2-thioxopyrimidin-4-yl)-4-hydroxy-2H-chromen-2-one (3a, 3b) and pyrazol-3-yl-4-hydroxycoumarin derivatives (4a-4c, 5, 6a, 6b, 7a, 7b, and 8a-8c) were prepared in order to measure their % change dopamine release in comparison to amphetamine as reference, using PC-12 cells in different concentrations. In addition, the molecular modeling study of the compounds into 3BHH receptor was also demonstrated. The calculated inhibition constant (ki) implemented in the AutoDock program revealed identical correlation with the experimental results to that obtained binding free energy (ΔGb) as both parameters revealed reasonable correlation coefficients (R2) being 0.51 involving 10 compounds; (1, 2b, 2c, 3a, 3b, 4a, 4b, 6a, and 8c).  相似文献   

12.
Yellow cyclometalatated ruthenium (II) complexes [Ru(o-X-2-py)(MeCN)4]PF6 (1, X = C6H4 (a) or 4-MeC6H3 (b)) react readily with 1,10-phenanthroline (LL) in MeCN to give brownish-red species cis-[Ru(o-X-2-py)(LL)(MeCN)2]PF6 in high yields. The same reaction of the same complexes under the same conditions with 2,2′-bipyridine results in a significant color change from yellow to brownish-orange suggesting a formation of new species. Surprisingly, X-ray structural studies of these two complexes showed that they are structurally indistinguishable from the starting complexes 1. Referred to as complexes 4a,b, the new compounds are slightly more stable in the air though their spectral characteristics in solution are similar to 1a,b. The diffuse reflectance spectroscopy is so far the only technique that indicated differences between 1 and 4.  相似文献   

13.
A series of new ruthenium(II) carbonyl chloride complexes with pyridine-functionalised N-heterocyclic carbenes [Ru(Py-NHC)(CO)2Cl2], [Py-NHC = 3-methyl-1-(2-pyridyl)imidazol-2-ylidene, 1 (1a and 1b); 3-methyl-1-(2-picoyl)imidazol-2-ylidene, 2 (2a and 2b); 3-methyl-1-(2-pyridyl)benzimidazolin-2-ylidene, 3 (3b); 3-methyl-1-(2-picoyl)benzimidazolin-2-ylidene, 4 (4a and 4b); 1-methyl-4-(2-pyridyl)-1,2,4-triazoline-5-ylidene, 5 (5a and 5b)] have been prepared by transmetallation from the corresponding silver carbene complexes and characterized by NMR, IR spectroscopy and elemental analysis. In these complexes with bidentate Py-NHC ligands, one CO ligand is trans to the Py ligand. In 1a, 2a, 4a, and 5a, the NHC ligand is trans to the other CO ligand, thus leaving the two Cl ligands trans to each other. In 1b, 2b, 3b, 4b, and 5b, the NHC ligands are trans to one Cl ligand, and the two Cl ligands are cis to each other. The structures for 1b, 2b, 3b and 4b have been determined by single-crystal X-ray diffraction. These complexes are efficient catalysts in the transfer hydrogenation of acetophenone and their catalytic activities are found to be influenced by electronic effect of the N-heterocyclic carbene ligands.  相似文献   

14.
The syntheses and structures of homo- and heteronuclear biscarbene complexes with bithiophene spacers were investigated. The complexes were synthesized by lithiation of bithiophene followed by metallation using combinations of the metal precursors MnMeCp(CO)3, W(CO)6, Mo(CO)6 and Cr(CO)6, after which the reaction was quenched with triethyloxonium tetrafluoroborate. This classical Fischer method yielded monocarbene complexes, [MLnC(OEt)C4H2S-C4H3S], ([MLn] = Cr(CO)51a, W(CO)52a or MnMeCp(CO)23a), homonuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)MLn], ([MLn] = Cr(CO)51b, W(CO)52b or MnMeCp(CO)23b) and heteronuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)M′Ln] (1d: [MLn] = Cr(CO)5 and [M′Ln] = W(CO)5; 1e: [MLn] = MnMeCp(CO)2 and [M′Ln] = Cr(CO)5; 1f: [MLn] = Cr(CO)5 and [M′] = Mo(CO)5); 2d: [MLn] = MnMeCp(CO)2 and [M′Ln] = W(CO)5; 3c: [MLn] = MnMeCp(CO)2 and [M′Ln] = Mo(CO)5). Electron density calculations with the gaussian03 software package of 1e revealed a polar rod with the negative pole towards the chromium carbene side, whereas the biscarbenes 1d and 1b showed very little polarity. By-products resulting from activation of the carbene moieties in homonuclear biscarbene complexes included (i) ester-type complexes of the form [MLnC(OEt)C4H2S-C4H2SC(O)OEt], ([MLn] = Cr(CO)51c or W(CO)52c), formed in situ in the reaction of 1b and 2b, (ii) the organic bis-ester compound [EtOC(O)C4H2S-C4H2SC(O)OEt] 4, where both metal moieties had been substituted by oxygen and (iii) the carbon-carbon coupled dimeric bithienyl compound [C4H3S-C4H2SC(O)C(O)C4H2S-C4H3S] 5. By-products obtained from heteronuclear biscarbene reactions contain the former diketo compound (or a derivative) as spacer between two metal carbonyl fragments and have the general formula [MLnC(OEt)C4H2S-C4H2SCR-CR′C4H2S-C4H2SC(OEt)MLn] (5a: [M] = Cr(CO)5, R = OH, R′ = OEt; 5b: [M] = W(CO)5, R = R′ = O; 5c: [M] = Mo(CO)5, R = R′ = O). Reaction of 1d, 1e and 1f with hex-3-yne resulted in the formation of benzannulated products 6a, 6b and 6c. All novel complexes were fully characterized using various spectroscopic techniques. The crystal structures of 1b, 2a and 5 are reported.  相似文献   

15.
The new diruthenium complexes trans-[(NH3)5Ru(L-L)Ru(NH3)4(bpy-Me)](PF6)5 (L-L are the bridging ligands pyrazine, 2a; 4,4′dipyridyl, 2b; and trans-1,2-bis(4-pyridyl)-ethylene, 2c; bpy-Me is N-methyl-pyridyl-pyridinium) are generated from the new complexes (L-L)Ru(NH3)4(bpy-Me)](PF6)3 (1a-c) and [(NH3)5Ru(H2O)](PF6)2. Cyclic voltammetry on the new compounds in acetonitrile electrolyte reveals two quasi-reversible oxidation steps corresponding to the two RuII/III couples in 2b and 2c and a single oxidations for 1a-c. In addition, two reduction waves are observed for the bpy-Me ligands of 1a-c and 2a-c. All of the new compounds exhibit multiple metal-to-ligand charge transfer (MLCT) bands in the visible region of the spectrum. For compounds 1a-c the most intense absorption in the visible region decreases in energy as the length of the aromatic bridging ligands increases. By contrast the strongest absorption band of 2a is lower in energy than the most intense bands of both 2b and 2c. Single crystal X-ray analysis of 2a reveals that the bridging pyridine is coplanar with the pyridyl ring of the bpy-Me ligand that is attached to the Ru center. DFT calculations on 2a indicate that the HOMO is localized predominately on the {(NH3)5Ru-pyz-Ru(NH3)4} portion of the complex and the LUMO has slightly more contribution from the bpy-Me ligand.  相似文献   

16.
Mononuclear and homobimetallic palladium complexes of structural type [trans-(Me(O)CS-4-C6H4)(Ph3P)2Pd(NN)]OTf (8a, NNC4H4N2; 8b, NNC5H4N-4-CN) and {[trans-(Me(O)CS-4-C6H4)(Ph3P)2Pd]2NN}(OTf)2 (9a, NN = 4,4′-bipyridine (=bipy); 9b, NN = C6H4-1,4-(CN)2; 9c, NN = (C6H4-4-CN)2) are accessible by the reaction of trans-(Ph3P)2Pd(C6H4-4-SC(O)Me)(OTf) (6) with 1 or 0.5 equivalents of the Lewis-bases NN (7a, NN = C4H4N2; 7b, NN = C5H4N-4-CN; 7c, NN = bipy; 7d, NN = C6H4-1,4-(CN)2; 7e, NN = (C6H4-4-CN)2) in high yield. Complex 6 can be prepared in a two-step synthesis procedure. Oxidative addition of I-1-C6H4-4-SC(O)Me (2) to Pd(PPh3)4 (3) gives trans-(Ph3P)2Pd(C6H4-4-SC(O)Me)(I) (4), which further reacts with [AgOTf] (5) to afford 6.The formation of 8 and 9 strongly depends on the size of the Lewis-bases NN. It is obvious that the co-ordination of the second N-ligated site of 8a or 8b to a further bulky[(PPh3)2Pd(C6H4-4-SC(O)Me)]+ unit is not possible. In contrast, more extended NN species such as 7c-7e will result in the formation of linear structured homobimetallic 9a-9c.The solid-state structures of 4 and 4 · CH2Cl2 are reported. Complex 4 is packed in the orthorhombic space group Pbca. The assembly of dichloromethane into the crystal lattice breaks the symmetry, whereby 4 · CH2Cl2 crystallises in the triclinic space group . In both modifications a square-planar palladium(II) ion is present, with the iodo atom and the Me(O)CS-C6H4 unit trans-positioned. The different crystal packing has no significant influence onto the geometry around the d8-configurated palladium atoms.  相似文献   

17.
The reaction of N-benzoyl and N-acetyl tris(pyridin-2-yl)methylamine 1b and 1c (LH = tpmbaH and tpmaaH) with [Re(CO)5Br] has been investigated and shown to proceed via the initial formation of a cationic rheniumtricarbonyl complex [(LH)Re(CO)3]Br in which coordination of the ligand occurs via the three pyridine rings. For tpmbaH 1b, but not tpmaaH 1c, this initial complex 2b readily undergoes the loss of HBr to give a neutral octahedral complex 4b [(L)Re(CO)3] where coordination occurs via two of the pyridine rings and the deprotonated amide nitrogen. The 1H NMR spectrum of the latter complex 4b is very unusual in that at room temperature the signals for the 3-H protons on the coordinated pyridine rings are not visible due to extreme broadening of these resonances. Comparison with the analogous complex 7 from N-benzoyl bis(pyridin-2-yl)methylamine 6b (bpmbaH) confirms that this is due to rotation of the uncoordinated pyridine ring. The structure of the cationic complex 3d [(LH)Re(CO)3]Br formed from N-benzyl tris(pyridin-2-yl)methylamine 1d (bz-tpmaH) is also discussed. The crystal structures of complexes [(tpmba)Re(CO)3] 4b, [(bz-tpmaH)Re(CO)3]Br 3d and [(bpmba)Re(CO)3] 7 have been determined. In all complexes the coordination geometry around Re is distorted octahedral with a fac-{Re(CO)3}+ core.  相似文献   

18.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

19.
Treatment of the six-coordinate trimethylstannyl complex, Os(SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) with SnMe2Cl2 produces Os(SnMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (2), which in turn reacts readily with hydroxide ion to give, Os(SnMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (3). The osmastannol complex 3 undergoes a reaction with 2 equivalents of tBuLi, in which one of the phenyl rings of a triphenylphosphine ligand is “ortho-stannylated”, without cleavage of the Os-Sn bond, to give the cyclic complex, Os(κ2(Sn,P)-SnMe2C6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (4). This novel cyclic complex is selectively functionalised at the tin atom by reaction with SnMe2Cl2 which exchanges one methyl group for chloride giving the diastereomeric mixture, Os(κ2(Sn,P)-SnMeClC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (5a/5b). Crystal structure determination reveals that both diastereomers occur in the unit cell. The mixture, 5a/5b, undergoes reaction with hydroxide ion to give the diastereomeric osmastannol complexes, Os(κ2(Sn,P)-SnMeOHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (6a/6b) and with sodium borohydride to give the corresponding tin-hydride mixture, Os(κ2(Sn,P)-SnMeHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (7a/7b). Crystal structure determinations for 2, 4, and 5a/5b have been obtained.  相似文献   

20.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号