首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four-coordinate complex MnIII(ISQ-Pri)(AP-Pri) (1), where ISQ-Pri = 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzosemiquinonate anion-radical, AP-Pri = 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-amidophenolate dianion, has been prepared by the reaction of Mn2(CO)10 with free 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzoquinone (IBQ-Pri) in the molar ratio 1:4 in toluene. In contrast to manganese, rhenium carbonyl reacts with o-iminobenzoquinone to form complex ReII(ISQ-Pri)2(CO)2 (2) with the retention of two carbonyls in coordination sphere of rhenium. The complexes have been characterized by IR, UV-Vis, and EPR spectroscopies. Molecular structures of compounds 1 and 2 have been determined by single-crystal X-ray crystallography. Compound 1 is centro-symmetric square-planar molecule with delocalized mixed valent state of AP-Pri and ISQ-Pri ligands. EPR spectrum of 1 in solid at 300-77 K is typical for manganese complexes with S = 3/2 state. The effective magnetic moment of 1 is 1.96 μB at temperature 5 K as it was established by variable-temperature magnetic susceptibility measurements. Six-coordinate octahedral complex 2 possesses an S = 1/2 ground state, which is attained via strong intramolecular antiferromagnetic interaction between t2g orbital unpaired electron of the low spin ReII ion and the unpaired electron on π-orbital of the radical ligand.  相似文献   

2.
Addition of 3,6-di-tert-butyl-o-benzoquinone (3,6-DBBQ) to SnCl2 in THF leads to the oxidation of Sn(II) to Sn(IV) with formation of catecholate complex (3,6-DBCat)SnCl2 · 2THF (1), where 3,6-DBCat is 3,6-di-tert-butyl-catecholate dianion. The reaction of 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzoquinone (IBQ-Pri) also proceeds on the oxidative-addition mechanism yielding bis-iminosemiquinonato species (ISQ-Pri)2SnCl2(2), where ISQ-Pri is anion-radical 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzosemiquinolate. The complexes have been characterized by IR, X-band EPR, 1H NMR (for 1) spectroscopy and magnetochemistry (for 2). X-ray analysis data show the distorted octahedral environment of tin(IV) for both complexes. Complex 1 is diamagnetic (ground state S = 0), while 2 has triplet ground state (S = 1, biradical). Catecholate complex 1 is able to be a spin trap for different organic radicals.  相似文献   

3.
The heteronuclear water-soluble and air-stable compounds [M(H2O)5M′(dipic)2] · mH2O (M/M′ = CuII/CoII (1), CuII/NiII (2), CuII/ZnII (3), ZnII/CoII (4), NiII/CoII (5), m = 2-3; H2dipic = dipicolinic acid) have been prepared by self-assembly synthesis in aqueous solution at room temperature, and characterized by IR, UV-Vis and atomic absorption spectroscopies, elemental and X-ray diffraction single crystal (for 1 and 2) analyses. 1-5 represent the first examples of heteronuclear dipicolinate compounds with 3d metals. Extensive H-bonding interactions involving all aqua ligands, dipicolinate oxygens and lattice water molecules further stabilize the dimetallic units by linking them to form three-dimensional polymeric networks.  相似文献   

4.
Reactions of FeII, CoII, NiII, and ZnII salts with 6-quinolinecarboxylic acid (HL) under the hydrothermal conditions afford three monomeric complexes [M(L)2(H2O)4] (M = FeII for 1, CoII for 2, and NiII for 3) and a 1-D polymeric species {[Zn(L)2(H2O)] · H2O}n (4). The crystal structures of the ligand HL and these four complexes have been determined by using the X-ray single-crystal diffraction technique. The results suggest that complexes 1-3 are isostructural, displaying novel 3-D pillar-layered networks through multiple intermolecular hydrogen bonds, whereas in coordination polymer 4, the 1-D comb-like coordination chains are extended to generate a hydrogen-bonded layer, which is further reinforced via aromatic stacking interactions. Solid-state properties such as thermal stability and fluorescence emission of the polymeric ZnII complex 4 have also been investigated.  相似文献   

5.
Dark blue [PPh4][CoIII(2L)] (2), where (2L)2− represents the closed-shell dianion of 4,6-di-tert-butyl-2-[(pentafluorophenyl)amino]benzenethiol, has been synthesized from the reaction of H2(2L) and CoCl2 (2:1) in acetonitrile with excess NEt3, brief exposure of the solution to air, and addition of [PPh4]Br. The oxidation of 2 with one equivalent of iodine produces the neutral species [CoIII(2L)2I]0 (3), where (2L)1− represents the one-electron oxidized π radical anion of (2L)2−. Crystalline [CoIII(4L)] (4), where (4L)3− is the π radical monoanion of bis-2,2′-(1,2-diphenylethylenediimine)-benzenethiolate, was precipitated from a toluene reflux of [CoII(3L)2], where (3L)2− is the closed-shell monoanion of 2-(phenylmethylamino)benzenethiol. The reduction of 4 with CoCp2 under anaerobic conditions yielded dark violet crystals of [CoCp2][CoIII(4L)] (5). The reaction of Zn(CH3CO2)2 with 2-phenylbenzothiazoline in methanol resulted in the formation of [ZnII(3L)2]0 (6). The two monoanions 2, and 5, along with [N(n-Bu)4][Co(abt)2] (1) (abt2− = o-aminobenzenethiolate), and neutral 4 have all been shown by X-ray crystallography to be square planar. A tetrahedral geometry was adopted by 6. From temperature dependent (3-300 K) magnetic susceptibility measurements, it was established the monoanions have a triplet ground state characterized by a large zero field splitting. EPR measurements of 4, and electrochemically oxidized 1 and 2 reveal distinctly different spin Hamiltonian parameters that are interpreted with the aid of density function theoretical (DFT) calculations. It is shown that oxidation states describing a d6 Co(III) or d7 Co(II) cannot be unambiguously assigned for these neutral and monoanionic species.  相似文献   

6.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography.  相似文献   

7.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

8.
The syntheses and structural characterization of four cobalt(II)-salicylate complexes, [(TPA)CoII(HSA)](ClO4) (1), [(isoBPMEN)CoII(HSA)](BPh4) (2), [(TPzA)CoII(HSA)](ClO4) (3) and [(6Me3TPA)CoII(HSA)](BPh4) (4) [TPA = tris(2-pyridylmethyl)amine, isoBPMEN = N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine, TPzA = tris((3,5-dimethyl-1H-pyrazole-1-yl)methyl)amine and 6Me3TPA = tris(6-methyl-2-pyridylmethyl)amine] are described. While 2, 3 and 4 are unreactive towards dioxygen, 1 reacts slowly with molecular oxygen to a cobalt(III)-salicylate complex, [(TPA)CoIII(SA)](ClO4) (1a). Two different crystalline forms, 1a and 1a·4H2O were isolated depending upon the condition of oxidation and crystallization. The solid-state structures of cobalt(III)-salicylate unit in both 1a and 1a·4H2O show a six-coordinate distorted octahedral coordination geometry at the cobalt(III) center ligated by the tetradentate ligand (TPA) where the dianionic salicylate (SA) binds in a bidentate fashion through one carboxylate and one phenolate oxygen. The hydrated form 1a·4H2O reveals a hexameric water cluster formation in the inorganic lattice host. The complex cation and the perchlorate counterion are involved in stabilizing the (H2O)6 cluster in a rare ‘pentamer planar+1’ conformation. A one-dimensional water tape consisting of edge-shared water hexamers is observed. The water tape represents a subunit of ice structure.  相似文献   

9.
A dicyanamide bridged 2D polynuclear complex of copper(II) having molecular formula [Cu2(L)(μ1,5-dca)2]n (1) has been synthesized using the Schiff base ligand N,N′-bis(salicylidene)-1,3-diaminopentane, (H2L) and sodium dicyanamide (dca). The complex presents a 2D hexagonal structure formed by 1,5-dca singly bridged helical chains connected through double 1,5-dca bridges. The chelating characteristics of the H2L Schiff base ligand results in the formation of copper(II) dimer with a double phenoxo bridge presenting a very strong antiferromagnetic coupling in the copper(II) derivative (1) (J = −510 cm−1). The dimeric asymmetric unit of 1 is very similar to the active site of the catechol oxidase and, as expected, also presents catalytic activity for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone in presence of O2, as demonstrated by kinetic studies of this oxidation reaction monitored by absorption spectroscopy resulting in high turnover number (Kcat = 259 h−1).  相似文献   

10.
By exploiting the peculiar reactivity of [Rh2(μ-O2CBut)4(H2O)2] (1) the examples of dinuclear rhodium(II) carboxylates containing N-donor axial ligands (2, 3) [Rh2(μ-O2CBut)4L2] [where L = benzonitrile (2), 3,5-di-tert-butyl-4-hydroxybenzonitrile (3)] were synthesized and characterized by elemental analysis, IR, multinuclear NMR spectroscopy, MALDI-TOF mass spectrometry. It was found by X-ray diffraction that pairs of 3 in crystals are associated through H atoms of phenol groups to produce a dimer of dimers. The chemical oxidation of dirhodium complexes with 2,6-di-tert-butyl-4-cyanоphenol pendants studied by means of ESR method in solutions leads to the formation of phenoxyl radicals 3′ in dirhodium system. The ESR data show the interaction of the unpaired electron with ligand nuclei (1H, 14N) and 103Rh. The stability of radical complexes with phenoxyl fragments in axial position is influenced by the temperature. The enthalpy of the 3′ decomposition followed by the formation of cyanophenoxyl radical as 20 ± 1 kJ/mol was estimated. Redox transformations in dirhodium system including both metal and axial ligands were investigated by electrochemistry. CV experiments confirm the assumption of the metal oxidation (RhII→RhIII) as the first step following by the oxidation of the ligand.  相似文献   

11.
The oxidative dealkylation of 2,4,6-tri-tert-butylphenol (TTBP) has been investigated using molecular oxygen and [Cu(NO3(GBHA)](NO3) as catalyst, where GBHA is N,N′-bis((benzimidazol-2-yl)methyl)hexanediamide [(a) M. Gupta, P. Mathur, R.J. Butcher, Inorg. Chem. 40 (2001) 878; (b) M. Gupta, S.K. Das, P. Mathur, A.W. Cordes, Inorg. Chim. Acta 353 (2003) 197; (c) S. Tehlan, M.S. Hundal, P. Mathur, Inorg. Chem. 43 (2004) 6589; (d) F. Afreen, P. Mathur, A. Rheingold, Inorg. Chim. Acta 358 (2005) 1125.]. X-ray structural characterization of complex [Cu(NO3)(GBHA)](NO3) · CH3OH confirms that the Cu (II) ion is in a distorted square pyramidal geometry (τ = 0.168). The TTBP oxidation reaction proceeds via tri-tert-butylphenoxyl radical producing two products 2,6-di-tert-butyl-1,4-benzoquinone (A) and 4,6-di-tert-butyl-1,2-benzoquinone (B). Both A and B have been well characterized by 1H NMR, 13C NMR, UV-Vis and mass data.  相似文献   

12.
Four new hetero-bimetallic Co3+-Na+ and Co3+-K+ coordination polymers having the molecular formulae [Na(H2O)Co(L)(N3)3]n (1), [Na2Co(L)(N3)3(H2O)5][Co(L)(N3)3] (2), K[Co(L)(NCS)3]·H2O (3) and K[Co(L)2][Co(NCS)4]·0.5H2O (4), were synthesized. Compounds 1-4 were characterized by single crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric methods. These bimetallic systems have EE, EO azide bridge (1, 2) as well as bent (1, 2, 3) and linear (1, 4) aquo bridges. Important features observed among them were: a Z-shaped and diamond-shaped Co2Na2 clusters in 1, a centrosymmetric double ladder like polymer based on Na4 cluster in 2, and a linear KOK core having paddle-wheel structure in 4.  相似文献   

13.
We synthesized iron(III), cobalt(II), copper(II) and zinc(II) complexes [FeIII(HBPClNOL)Cl2]·H2O (1), [CoII(H2BPClNOL)Cl2] (2), [CuII(H2BPClNOL)Cl]Cl·H2O (3), and [ZnII(HBPClNOL)Cl] (4), where H2BPClNOL is the ligand (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine). The complexes obtained were characterized by elemental analysis, IR and UV-visible spectroscopies, electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and cyclic voltammetry. X-ray diffraction studies were performed for complexes (3) and (4) revealing the presence of mononuclear and dinuclear structures in solid state for (3). However, the zinc complex is mononuclear in solid state. Biological studies of complexes (1)-(4) were carried out in vitro for antimicrobial activity against nine Gram-positive bacteria (Staphylococcus aureus strains RN 6390B, COL, ATCC 25923, Smith Diffuse, Wood 46, enterotoxigenic S. aureus FRI-100 (SEA+), FRI S-6 (SEB+) and SEC FRI-361) and animal strain S. aureus LSA 88 (SEC/SED/TSST-1+). The following sequence of inhibition promoted by the complexes was observed: (4) > (2) > (3) > (1), showing the effect of the metal on the biological activity. To directly observe the morphological changes of the internal structure of bacterial cells after the treatment, transmission electron microscopy (TEM) was employed. For the most active complex [ZnII(HBPClNOL)Cl] (4), granulation deposits around the genetic material and internal material leaking were clearly detected.  相似文献   

14.
The complexes (Tpms)VCl2(DMF) (1), and (Tpms)VOCl(DMF) (2), have been synthesized and characterized. Complex 2 has also been structurally characterized via X-ray diffractometry. The vanadium(IV) center possesses a square pyramidal/distorted octahedral geometry with a facially coordinating Tpms ligand in a κ3-N,N,O coordination mode. The complex is the first structurally characterized example of a vanadium(IV) complex with Tpms. Complex 2 shows catalytic activity towards oxidation of 3,5-di-tert-butyl catechol and also exhibits phosphatase inhibition characteristics on alkaline phosphatase. Tpms = trispyrazolylmethanesulfonate; DMF = N,N-dimethylformamide.  相似文献   

15.
The reactions of 2,5-bis(pyrazinyl)-1,3,4-oxadiazole (bpzo) with CdII or CoII salt in the presence of thiocyanate afford two distinct complexes, a 1-D coordination array [Cd(bpzo)2(SCN)2]n (1) and a 3-D hydrogen-bonded supramolecular network [Co(bpzo)2(SCN)2(H2O)2](CH3CN)2(H2O)2 (2). X-ray single-crystal structural determination reveals that the extended networks of complexes 1 and 2 are manipulated via different directional propagating forces. In 1, the adjacent CdII centers are bridged by a pair of μ1,3-SCN anions to form a 1-D array, whereas in 2, the monomeric CoII coordination entities are hydrogen-bonded into a novel 3-D architecture in which the thiocyanate ions take the only N-binding mode. In both cases, bpzo behaves as monodentate terminals. These results indicate that the choice of metal ions does play a critical role in the supramolecular assembly. The structural and binding features of bpzo in all related compounds have also been discussed.  相似文献   

16.
A series of LZn(II)Br (1-4) and LCd(II)Cl complexes (9-11) has been prepared by the reaction of metal halide precursors with the lithium salts of the N2S ligands bis(3,5-diisopropylpyrazol-1-yl)dithioacetate (L1), bis(3,5-di-tert-butylpyrazol-1-yl)dithioacetate (L2), N-phenyl-2,2-bis(3,5-diisopropylpyrazol-1-yl)thioacetamide (L3) and N-phenyl-2,2-bis(3,5-di-tert-butylpyrazol-1-yl)thioacetamide (L4). Characterization by X-ray crystallography and DOSY NMR studies indicate that LZnBr complexes 1-4 are mononuclear both in the solid state and in solution. Steric differences between ligands L1-L4 result in distortion from an ideal tetrahedral geometry for each complex, with the degree of distortion depending on the bulk of the ligand substituents. In contrast, the related complex L3CdCl was shown by X-ray crystallography to dimerize in the solid state to form the chloride-bridged five-coordinate complex [L3CdCl]2 (10). Despite 10 having a dinuclear structure in the solid state, DOSY NMR studies indicate 9-11 exist as mononuclear LCdCl species in solution. In addition, Zn(II) cyanide complexes of the form LZnCN [L = L1 (5), L3 (7), L4 (8)] have been characterized and the X-ray structure of 8 determined. Moreover, density functional theory calculations have been conducted which yield important insight into the bonding in 1-4 and 5-8 and the electronic impact of ligands L1-L4 on the zinc(II) ion and its ability to function as a Lewis acid catalyst.  相似文献   

17.
Using a non-planar tridentate ligand 2,6-bis(pyrazol-1-ylmethyl)pyridine (L5) two new coordination complexes [(L5)CoII(H2O)3]Cl2 (1) and [(L5)NiII(H2O)2Cl]Cl·H2O (2) have been synthesized and structurally characterized. Complex 1 has N3O3 distorted octahedral environment around CoII with coordination by L5 (two pyrazole and a pyridine nitrogen in a facial mode) and three water molecules. Complex 2 has N3O2Cl distorted octahedral geometry around NiII with meridional L5 coordination, two water molecules, and a Cl ion. Analysis of the crystal packing diagram reveals the involvement of solvent (water as metal-coordinated and as solvent of crystallization) and counteranion (Cl) to play significant roles in generating 1D chains, involving O-H···Cl, and O-H···O interactions.  相似文献   

18.
Salen-Na2(1) and (Salen)2-La-Na(2) complexes have been prepared and structurally characterized [Salen = N,N′-bis (3,5-di-tert-butylsalicylidene)-1,3-propanediamine]. Experimental results show that the two complexes are efficient catalysts for the ring-opening polymerization (ROP) of l-lactide. According to the data of 1H NMR and electrospray-ionization (+ESI) mass spectrum, it is suggested that the obtained polymer is mainly cyclic polylactide (PLA) for a short PLA chain, but a mixture of cyclic and linear PLA for a long PLA chain. Structure-activity analysis of the two complexes is also done. We investigated why Salen-Na2 complex is more active (Salen)2-La-Na complex as the catalyst in the ROP of l-lactide and why the PLA catalyzed by complex 2 has lower PDIs than that catalyzed by complex 1.  相似文献   

19.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

20.
Several mononuclear copper complexes 1(a-b) and 2(a-b) supported over sterically demanding [NNO] ligands namely, N-(aryl)-2-[(pyridin-2-ylmethyl)amino]acetamide [aryl = 2,6-diethylphenyl (1) and mesityl (2)], exhibit catecholase-like activity in performing the aerial oxidation of 3,5-di-t-butylcatehol (3,5-DTBC) to 3,5-di-t-butyl-catequinone (3,5-DTBQ) under ambient conditions. The 1(a-b) and 2(a-b) complexes were directly synthesized from the reaction of the respective ligands 1-2 with CuX2·nH2O (X = Cl, NO3, n = 2, 3) in 55-85% yield. Mechanistic insights on the catalytic cycle as obtained by density functional theory studies for a representative complex 1a suggest that an intramolecular hydrogen transfer, from a catechol-OH moiety to a copper bound superoxo moiety, form the rate-determining step of the oxidation process, displaying an activation barrier of 18.3 kcal/mol (ΔG) [6.9 kcal/mol in Δ(PE + ZPE) scale].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号