首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of diethyl (pyridin-2-, -3-, -4-ylmethyl)phosphate (2-pmOpe, 3-pmOpe, 4-pmOpe) ligands and their palladium (II) complexes of general formula trans-[PdCl2L2] (L = 2-pmOpe, 3-pmOpe,4-pmOpe) has been described. Pyridine phosphate derivatives were synthesized via the condensation of phosphorochloridic acid diethyl ester with an appropriate pyridinylmethanol in the presence of triethylamine. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR, 31P CP-MAS NMR and elemental analyses. The crystal and molecular structures of palladium (II) complexes, i.e., [PdCl2(2-pmOpe)2] and [PdCl2(4-pmOpe)2] determined by the X-ray diffraction method, are presented. In both structures, Pd(II) ions are four-coordinated by two chlorine atoms and two pyridine nitrogen atoms. The geometry of complexes is square-planar and adopt a trans configuration, which is consistent with preparation method.  相似文献   

2.
Four ruthenium (II) complexes of general formula Ru(PPh3)2(L)2 have been synthesized and characterized. The spectroscopic and cyclic voltammetric studies of these complexes are also reported. X-ray crystal structure determination of two of the complexes reveal that Ru(II) occupies trans,trans,trans-(t,t,t) N2O2P2 centrosymmetric octahedral environments, with the ligand pair occupying the equatorial plane. 31P NMR confirms the presence of two trans-PPh3 groups in all the complexes. The transformation of the complexes in dichloromethane solution is studied by spectrophotometry and 31P NMR spectroscopy.  相似文献   

3.
Two new 3,5-dimethylpyrazolic derived ligands that are N1-substituted by diamine chains, 1-[2-(diethylamino)ethyl]-3,5-dimethylpyrazole (L1) and 1-[2-(dioctylamino)ethyl]-3,5-dimethylpyrazole (L2) were synthesised. Reaction of the ligands, L1 and L2, with [MCl2(CH3CN)2] yielded [MCl2(L)] (M = Pd(II), Pt(II)) complexes. These complexes were characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 195Pt{1H} NMR spectroscopies. The crystal structure of [PdCl2(L1)] was determined by single-crystal X-ray diffraction methods. The structure consists of mononuclear units. The Pd(II) atom is coordinated by a pyrazolic nitrogen, an amine nitrogen and two chlorine atoms in a cis disposition. In this structure, C-H?Cl, C-H?H-C and C-H?C-H intermolecular interactions have been identified.  相似文献   

4.
Reactions of 2-(arylazo)pyridine (La-c) with [IrCl3(PPh3)2] in two different solvents, viz. ethanol and toluene are reported. In refluxing toluene two new isomeric (mer and fac geometries) iridium complexes, having molecular formula [IrCl3(PPh3)(L)] (1 and 2) have been isolated. The reaction in refluxing ethanol yielded two new hydrido complexes of molecular formula [IrHCl2(PPh3)(L)] (3) and [IrHCl(PPh3)2(L)]Cl (4) along with the compound 2. All the complexes have been thoroughly characterized by NMR, UV-Vis spectroscopy, cyclic voltammetry and X-ray crystallographic analysis. The 1H NMR spectra of the hydrido complexes 3 and 4 showed a doublet and a triplet signals at δ −20.43 and −14.82 respectively due to coupling with magnetically equivalent phosphorous nuclei. Strong trans influence of the π-acceptor ligands guided the X-ray structural parameters; bonds trans to the these ligands are unusually long. Similar elongation effect was also noted for the bonds trans to the coordinated hydrido ligand. UV-Vis-NIR spectrum consisted of multiple transitions in the UV and visible regions. Cyclic voltammetry of each of these complexes has exhibited a reductive response between −0.25 and −0.55 V, which has been assigned to azo-ligand reduction. The compound 3, however, showed a quasireversible oxidative wave near 1.45 V, due to IrIII/IrIV couple.  相似文献   

5.
The novel dimer of the composition [Pt2Cl4(μ-(κP1:κP2-o-MeO-trans-dppen))2] (1) (o-MeO-trans-dppen = 1,2-(bis(o-methoxyphenyl)phosphanyl)ethylene) has been prepared and characterized by a single crystal X-ray structure analysis, NMR spectroscopy, mass spectrometry and elemental analysis. This latter compound undergoes a [2+2] photocycloaddition reaction yielding the tetraphosphane all-trans-1,2,3,4-tetrakis(di(o-methoxyphenyl)phosphanyl)cyclobutane (o-MeO-dppcb). The X-ray structure of the dimeric Ni(II) complex that contains the latter ligand, of the formula [Ni2Cl4(μ-(κP1:κP2:κP3:κP4-o-MeO-dppcb))] (2) reveals that the apical coordination sites of both square pyramidal Ni(II) coordination spheres are occupied by methoxy-oxygen atoms of the ligand. As a consequence, this dimeric Ni(II) complex 2 is prone to a thermally induced regio- and diastereoselective metal-assisted methoxy-group cleavage. The stepwise formed new mono- and bis-phenolate complexes [Ni2Cl3(μ-(κO1,κP1:κP2:κP3:κP4-o-MeO-O-dppcb))] (3) and [Ni2Cl2(μ-(κO1,κP1:κP2:κO2,κP3:κP4-o-MeO-O,O′-dppcb))] (4), respectively, contain the novel chiral tetraphosphane ligands all-trans-1,2,3-tris((di-o-methoxyphenyl)phosphano)-4-((o-methoxy-phenyl)(o-phenolate)phosphano)cyclobutane (o-MeO-O-dppcb) and all-trans-1,2-bis((di-o-methoxyphenyl)phosphano)-3,4-bis((o-methoxyphenyl)(o-phenolate)phosphano)cyclobutane (o-MeO-O,O′-dppcb). Compounds 3 and 4 have been synthesized independently and are also fully characterized by both single crystal X-ray structure analyses, NMR spectroscopy, mass spectrometry and elemental analyses. The conversion of 2 into 3 and then further into 4 has been followed by a variable-temperature 31P{1H} NMR experiment with compound 2 in DMF-d7, revealing that the cleavage of the second methoxy group is kinetically disfavoured. This is in agreement with the X-ray structure analysis of 3, indicating the lack of any methoxy-oxygen atom coordination that could easily induce a further methoxy-group cleavage. o-MeO-O-dppcb and o-MeO-O,O′-dppcb are rare P-stereogenic tetraphosphine ligands and contribute to the synthetic field of new κ3-P,P,O-coordinating phosphanylphenolate ligands that are believed to be important for the SHOP process (SHOP, Shell Higher Olefin Process).  相似文献   

6.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

7.
A new class of mononuclear metal complexes with 1-methylimidazole-2-aldoximate (miao) has been synthesized and characterized: trans-NiII(Cl)2(Hmiao)2 (1), trans-NiII(miao)2(py)2 (2), NO-trans-NiII(miao)2(phen) (3), and NO-trans-FeII(miao)2(phen) (4). The crystal structures of 2, 3, and 4 have been determined by single-crystal X-ray crystallography. Compound 1 having the protonated miao ligand (i.e., Hmiao) is a precursor for synthesizing 2 and 3. Compound 2 is an octahedral NiII complex surrounded by two miao bidentate ligands and two monodentate ligands of pyridine in a trans-arrangement. Compound 3 is a cis-type octahedral NiII complex with two miao ligands and a bidentate ligand of 1,10-phenanthroline, in which the ligand arrangement around NiII center is found in an NO-trans form. Compound 4 is an isostructural FeII derivative of 3. Compounds 1, 2, and 3 exhibit paramagnetic nature with an S = 1 spin and a positive zero-field splitting, among which it for 3 is overlapped with intermolecular ferromagnetic interaction (zJ/kB = +0.16 K). Compound 4 is diamagnetic due to the existence of low-spin FeII ion.  相似文献   

8.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

9.
N,N-bis[4-(2-aminoethyl)morpholino]glyoxime (H2L) (Fig. 1), has been prepared in various yields using three different methods. The most efficient of these methods is the technique of microwave irradiation. The crystal structures of H2L, and of two nickel(II) complexes 1 and 2 have been determined by single crystal X-ray diffraction. Both nickel(II) complexes have a metal-ligand ratio of 1:2 in which the ligand coordinates through the two nitrogen atoms as do most vic-dioximes. The nickel(II) complexes are either hydrogen (1) or boron diphenyl bridged (2). Complex 1 was synthesized by reacting H2L with nickel(II) chloride in refluxing ethanol. Complex 2 was prepared at room temperature in an ethanol solution containing excess NaBPh4. Elemental analyses, NMR(1H, 13C), IR and mass data are also presented.  相似文献   

10.
The structure and reactivity of the complex [Ru(2,3-Medpp)2Cl2](PF6)2 (2,3-Medpp+=2-[2-(1-methylpyridiniumyl)]-3-(2-pyridyl)pyrazine) was investigated by X-ray diffraction (XRD), 1H NMR, redox, and UV-Vis absorption measurements. X-ray analysis shows that crystals obtained from an acetonitrile-toluene solution contain the trans-Cl2, trans-pyrazine isomeric form, while 1H NMR and redox measurements on the main product of the synthetic workup indicate the presence of the trans-Cl2, cis-pyrazine isomer. In the dark at 70 °C, the complex [Ru(2,3-Medpp)2Cl2]2+ reacts slowly in acetonitrile isomerizing to the cis-[Ru(2,3-Medpp)2(CH3CN)Cl]3+ species. Under ambient light in the presence of excess AgNO3 the cis-[Ru(2,3-Medpp)2(CH3CN)2]4+ species is obtained.  相似文献   

11.
The high-energy intraconfigurational spin-forbidden bands expected in the region of 20 000 cm−1 have been uncovered in the spectra of a number of trans-diacidobis(ethylenediamine) chromium(III)complexes. These bands have been fitted to the quadrate components of the cubic transition 4A2g → 2T2g including spin-orbit interaction. Two interconfigurational spin-forbidden bands in the spectrum of trans-[Cr(en)2(dmf)2](ClO4)3 have been uncovered and interpretted.  相似文献   

12.
The synthesis and structural characterization of NiII, CuII and ZnII complexes of two chelating 1,2,4-oxadiazole ligands, namely 3,5-bis(2′-pyridyl)-1,2,4-oxadiazole (bipyOXA) and 3-(2′-pyridyl)5-(phenyl)-1,2,4-oxadiazole (pyOXA), is here reported. The formed hexacoordinated metal complexes are [M(bipyOXA)2(H2O)2](ClO4)2 and [M(pyOXA)2(ClO4)2], respectively (M = Ni, Cu, Zn). X-ray crystallography, 1H and 13C NMR spectroscopy and C, N, H elemental analysis data concord in attributing them an octahedral coordination geometry. The two coordinated pyOXA ligands assume a trans coplanar disposition, while the two bipyOXA ligands are not. The latter result is a possible consequence of the formation of H-bonds between the coordinated water molecules and the nitrogen atom of the pyridine in position 5 of the oxadiazole ring. The expected splitting of the d metal orbitals in an octahedral ligand field explains the observed paramagnetism of the d8 and d9 electron configuration of the nickel(II) and copper(II) complexes, respectively, as determined by the broadening of their NMR spectra.  相似文献   

13.
Four palladium(II) and platinum(II) saccharinate (sac) complexes with 2-(hydroxymethyl)pyridine (2-hmpy) and 2-(2-hydroxyethyl)pyridine (2-hepy), namely trans-[Pd(2-hmpy)2(sac)2]·H2O (1), trans-[Pt(2-hmpy)2(sac)2]·3H2O (2), trans-[Pd(2-hepy)2(sac)2] (3) and trans-[Pt(2-hepy)2(sac)2] (4), have been synthesized and characterized by elemental analysis, UV–vis, IR and NMR. Single crystal X-ray analysis reveals that the metal(II) ions in each complex are coordinated by two sac and two 2-hmpy or 2-hepy ligands with a trans arrangement. Anticancer effects of 14 were tested against four different cancer cell lines (A549 and PC3 for lung cancer, C6 for glioblastoma, and Hep3B for liver cancer). Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The mode of cell death was determined by both histological and biochemical methods. Among the metal complexes, complex 2 resulted in relatively stronger anti-growth effect in a dose-dependent manner (3.13–200 μM), compared to the others, by inducing apoptosis.  相似文献   

14.
A 14-membered tetraaza macrocycle, 2,13-bis(2-carbomethoxyethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane (L2) bearing two N-CH2CH2COOMe groups, and its nickel(II) and copper(II) complexes have been prepared and characterized. The nickel(II) and copper(II) complexes of 2-(2-carbomethoxyethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane (L3) containing one N-CH2CH2COOMe group have also been prepared. The crystal structure of [NiL2](ClO4)2 shows that the complex has a slightly distorted trans-octahedral coordination geometry with two relatively short axial Ni-O (N-CH2CH2COOMe group) bonds (2.136(3) Å). In various solvents, however, a considerable proportion of [NiL2]2+ exists as a square-planar form, in which the functional pendant arms are not involved in coordination. The proportion of the square-planar isomer varies with solvents in the order of nitromethane ? acetonitrile < H2O < DMF ? DMSO. In the case of [CuL2](ClO4)2, only one N-CH2CH2COOMe group is involved in coordination. The N-CH2CH2COOMe group of [NiL3](ClO4)2 is not directly involved in coordination even in the solid state, though the functional group of [CuL3](ClO4)2 is coordinated to the metal ion.  相似文献   

15.
The title ligand, N-(2-hydroxyphenyl)methyl-bis-(2-pyridylmethyl)amine, was prepared via a condensation-reduction synthetic route. The compounds, CuCl(C19H19N3O) and [CuBr(C19H19N3O)]+Br · 3H2O, were readily synthesized from the reaction of CuCl or CuBr2 and the ligand in acetonitrile. The title copper(I) compound is an O-H ? Cl hydrogen-bonded linear chain of tetrahedrally coordinated copper centers, and the title copper(II) compound exists as two strongly tetragonally distorted dibromide bridged metal cations in a dimer with the phenol hydroxyl groups weakly bound in a trans-fashion to one of the bridging bromides. In the copper(I) complex the phenoxy group acts only as a hydrogen bond donor, whereas in the copper(II) complex it acts both as a ligand and a hydrogen bond donor.  相似文献   

16.
(E)-2-(2-(2-hydroxyphenyl)hydrazono)-1-phenylbutane-1,3-dione (H2L) was synthesized by azocoupling of diazonium salt of 2-hydroxyaniline with 1-phenylbutane-1,3-dione and characterized by IR, 1H and 13C NMR spectroscopies and X-ray diffraction analysis. In solution, H2L exists as a mixture of the enol-azo and hydrazone tautomeric forms and a decrease of temperature and of solvent polarity shifts the tautomeric balance to the hydrazone form. In the solid state, H2L crystallizes from ethanol-water in the monohydrate hydrazone form, as shown by X-ray analysis. The dissociation constants of H2L (pK1 = 5.98 ± 0.04, pK2 = 9.72 ± 0.03) and the stability constants of its copper(II) complex (log β1 = 11.01 ± 0.07, log β2 = 20.19 ± 0.08) were determined by the potentiometric method in aqueous-ethanol solution. The copper(II) complex [Cu2(μ-L)2]n was isolated in the solid state and found by X-rays to be a coordination polymer of a binuclear core with a distorted square pyramidal metal coordination geometry.  相似文献   

17.
A reaction of the octahedral bidentate metalloligand, trans(N)-[Co(d-pen)2] (d-pen=d-penicillaminate) with Cd(NO3)2 or Cd(ClO4)2 gave a novel S-bridged trinuclear complex, [Cd(H2O){Co(d-pen)2}2] (1). In this complex molecule, the central Cd atom is surrounded by four S atoms from two [Co(d-pen)2] units and one O atom of a H2O molecule to form a distorted five-coordinated geometry. Each of two terminal [Co(d-pen)2] units takes an approximately octahedral geometry and has a similar trans(N) geometry to that of the starting material. On the other hand, the reaction of trans(N)-[Co(d-pen)2] with CdCl2 in the molar ratio of 1:1 gave an S-bridged dinuclear complex, [CdCl{Co(d-pen)2}(H2O)mnH2O (m+n=4) (2). The reactivity of trans(N)-[Co(d-pen)2] toward CdCl2 is significantly influenced by the ratio of two components, and the formation of a similar trinuclear species to 1 is also suggested under the condition with excess amount of trans(N)-[Co(d-pen)2]. Some spectrochemical properties of these complexes are also discussed in relation to their structures.  相似文献   

18.
A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing α,α-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)]2 (ONNO2− = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)]2, but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis.  相似文献   

19.
The synthesis, structure and spectroscopic properties of novel palladium(II) chloro complexes with a series of (aminoalkyloxymethyl)dimethylphosphine oxides (AOPO) are reported. The complexes with general formula PdCl2(N,N′-AOPO2) were obtained by the reaction of PdCl2(CH3CN)2 with the ligands in dry ethanol. The crystal structure of the trans-bis[2-(dimethylphosphinoylmethoxy-1,1-dimethylethylamine)]palladium(II) dichloride has been determined from single-crystal X-ray diffraction data. The compound crystallizes in monoclinic crystal system with P21/n space group. The square-planar coordination sphere of palladium consists of two N atoms from two aminoalkyldimethylphosphine ligands and two Cl atoms in trans-arrangement. The AOPO ligand has monodentate coordination through the NH2 group. The Pd-N and Pd-Cl distances are 2.0610(14) and 2.3225(4) Å, respectively. The preparation of complexes with a composition PdCl2(AOPO)2 in chloroform solution are also reported.  相似文献   

20.
A new NNS tridentate ligand, S-allyl-3-(2-pyridyl-methylene)dithiocarbazate (HL) has been prepared. Three coordination complexes, Mn(L)2 (1), [Co(L)2]NO3 (2) and Ni(L)2 (3) (L is the deprotonated monoanionic form of HL) have been synthesized and characterized by elemental analysis, molar conductivity, FT-IR, 1H NMR and UV-Vis spectroscopy. 1 and 3 are neutral complexes, while 2 is cationic with nitrate as the counter ion. Single crystal X-ray diffraction analysis shows that bis-chelate complexes have a distorted octahedral geometry in which two ligands in thiolate tautomeric form coordinate to the metal center through N atoms of the pyridine and imino moieties and one S atom. Molecular geometry from X-ray analysis, molecular geometry optimization, atomic charges distribution and bond analysis of the ligand and complexes have been performed using the density functional theory (DFT) with the B3LYP functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号