首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Interaction of cadmium(II) or zinc(II) acetate with 1,2-bis(4-pyridyl)ethane (bpe) in the presence of dioxime(1,2-cyclohexanedionedioxime = NioxH2 or diphenylglyoxime = dpgH2) resulted in three complexes with the compositions [Cd2(CH3COO)4(NioxH2)2(bpe)(H2O)2] (1), [Cd(CH3COO)2(bpe)(H2O)]n (2) and [Zn(CH3COO)2(NioxH2)(bpe)(H2O)]n (3), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, and luminescence spectroscopy. Dioxime-containing binuclear molecule 1 and 1D linear polymer 3 possess moderate luminescence properties, while the dioxime-free 1D polymer 2 demonstrates strong blue luminescence.  相似文献   

2.
Two new lead(II) nitrate coordination polymers from ligand 1,2-di-(4-pyridyl)-ethylene (bpe), [Pb2(μ-bpe)3(μ-NO3)2(NO3)2]n (1) and {[Pb(μ-bpe)(μ-NO3)2(NO3)(H2O)]·(Hbpe)·0.5(bpe)}n (2), were synthesized. The compounds 1 and 2 were characterized by IR spectroscopy, elemental analyses and X-ray crystallography. The structures of 1 and 2 may be considered coordination polymers of lead(II) consisting of metallocyclic chains formed by bridging bpe ligands, making two- and one-dimensional array of Pb(NO3)2 and bpe, respectively. Pure phase PbO nano-particles were obtained by thermolyses of compounds 1-2 in oleic acid as surfactant at 180 and 200 °C under air atmosphere. The PbO nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

3.
Reaction of [MoVI(TpMe,Me)(O)2Cl] with a variety of pyridine-based ligands [pyridine (py), 4,4′-bipyridine (bpy), 4-phenylpyridine (phpy) and 1,2′-bis(4-pyridyl)ethene (bpe)] in toluene in the presence of Ph3P affords the mononuclear oxo-Mo(IV) complexes [Mo(TpMe,Me)(O)Cl(L)] (L=py, phpy or monodentate bpy; abbreviated as Mo(py), Mo(phpy) and Mo(bpy), respectively) and the dinuclear complexes [{Mo(TpMe,Me)(O)Cl}2(μ-L)] (L=bpy, bpe; abbreviated as Mo2(bpy), Mo2(bpe), respectively). The complex Mo2(bpy), together with the by-product [{Mo(TpMe,Me)(O)Cl}2(μ-O)], have been crystallographically characterised. Electrochemical studies on the oxo-Mo(IV) complexes reveal the presence of reversible Mo(IV)/Mo(V) couples at around −0.3 V versus ferrocene/ferrocenium in every case. For the dinuclear complexes Mo2(bpy) and Mo2(bpe) these redox processes are coincident, indicating that they are largely metal-centred and not significantly delocalised across the bridging ligand. In contrast, Mo2(bpe) alone shows two reversible reductions, separated by 320 mV; these could be described as ligand-centred reductions of the bpe bridge, or as Mo(IV)/Mo(III) couples which—because of their separation—are substantially delocalised onto the bridging ligand. UV-Vis spectroelectrochemical studies using an OTTLE cell at 243 K revealed that oxidation of the complexes results in spectral changes (collapse of the Mo(IV) d-d transitions, loss in intensity of the Mo→pyridine MLCT transition) consistent with the formation of a Mo(V) state following metal-centred oxidation, but that one-electron reduction of Mo2(bpe) results in appearance of numerous intense transitions more characteristic of a ligand radical following ligand-centred reduction.  相似文献   

4.
Four new coordination complexes [Cd(DPBA-3)2(H2O)2](ClO4)2·2H2O (1), [Cd(DPBA-3)(DMF)(NO3)2]·DMF (2), [Cd3(DPBA-3)2(SCN)6]·2DMF·4H2O (3) and [Zn(DPBA-3)(SCN)2] (4) [DPBA-3 = N,N′-di(pyridin-3-yl)pyridine-3,5-dicarboxamide] have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. Complexes 1, 3 and 4 exhibit three different types of one-dimensional (1D) chain structures constructed by the metal ions and DPBA-3 ligands, and the Cd(II)-DPBA-3 1D chains in 3 are further linked by bridging SCN ligands to afford a three-dimensional (3D) framework. Complex 2 possesses a (6,3) two-dimensional (2D) layer structure. In 1-4, the hydrogen bonds involving the amide groups play important role to stabilize the resultant frameworks. The photoluminescence properties of the DPBA-3 and the complexes were studied in the solid state at room temperature.  相似文献   

5.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

6.
Three new 2D PbII coordination polymers containing 4,4′-bipyridine (4,4′-bipy), 1,2-bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) with bromide anions, [Pb(μ-4,4′-bipy)(μ-Br)2]n (1), [Pb(μ-bpa)(μ-Br)2]n (2) and [Pb(μ-bpe)(μ-Br)2]n (3) have been synthesized and characterized by elemental analysis, IR spectroscopy and their structures studied by X-ray crystallography. The thermal stability of compounds 1-3 was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray data shows that the Pb2+-ions have coordination numbers of six and contain the rarely holodirected geometries.  相似文献   

7.
Three new polymeric mercury(II) thiocyanate coordination polymers, {[Hg2(L4)(SCN)4]n (1), [Hg2(μ-L5)(μ-SCN)4]n[Hg2(μ-L5)(μ-SCN)4]2n (2) and [Hg(L6)(SCN)2]n (3); L4 = 2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene, L5 = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and L6 = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) were prepared from reactions of mercury(II) thiocyanate with three organic nitrogen donor-based ligands under thermal gradient conditions using the branched tube method and fully characterized by infrared spectroscopy, elemental analysis, thermo gravimetric analysis, and single crystal X-ray diffraction. The compounds are structurally diverse and show very interesting structural motifs: the compound 1 is one-dimensional heterochiral double-chains. In compound 2, the bridging ligand L5 adopts a transoid conformation and the network contains two interpenetrating coordination polymers, a 2D net and a 1D double-chain. The crystal structure of 3 consists of one-dimensional zigzag chains. Solid-state luminescent spectra of the compounds 1 and 3 indicate intense fluorescent emissions at ca. 393 nm and 363 nm, respectively.  相似文献   

8.
Three new coordination polymers based on IB metal thiocyanates, [CuII(NCS)2(DMSO)4(meso-dpb)]n (1), (2), [CuI(NCS)(pia)]n (3) (dpb = 2,3-di(4-pyridyl)-2,3-butanediol, bpp = 1,3-bis(4-pyridyl)propane, pia = N,N′-(1,2-phenylene)diisonicotinamide), have been synthesized by the pre-assembly method and characterized by X-ray crystallography. In 1, CuII cations are bridged by meso-dpb ligands to form a one-dimensional (1D) linear chain. Compound 2 consists of 2D undulated layers of (4, 4) topology that show twofold parallel interpenetration. In the case of 3, the MI center adopts tetrahedral coordination geometry and the 2D networks are formed by organic ligand with “folding ruler-shaped” NCS-M chains. The thermal properties of 1-3 were also investigated.  相似文献   

9.
Six novel Cd(II) coordination polymers based on 4,4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl (btmb), namely, [Cd(btmb)2I2]n (1), [Cd(btmb)I2]n (2), {[Cd(btmb)2(NO3)2]·H2O}n (3), {[Cd(btmb)2(SCN)2]·3H2O}n (4), {[Cd(btmb)(CH3COO)2(H2O)]·CH3CN}n (5) and [Cd(btmb)Cl2(H2O)]n (6) have been synthesized by the reactions of btmb with Cd(II) salts in the presence of different anions (I, , NCS, CH3COO or Cl) under appropriate reaction conditions. The assemblies of btmb with CdI2 afford two different structures: two-dimensional (2D) rhombohedral grid layer network structure 1 and 2D layer structure 2 involved with one-dimensional (1D) linear cadmium chains. Treatment of btmb with Cd(NO3)2·4H2O gives rise to a 2D grid network structure 3 which is similar to 1. When the I or NO3 anions were replaced by NCS, CH3COO or Cl, different 1D coordination polymers 4-6 were obtained, respectively. Polymer 4 displays a 1D double-chain structure, while both polymers 5 and 6 show 1D zigzag chain structures. In addition, the luminescence measurements reveal that polymers 1-6 exhibit different fluorescent emissions in the solid-state at room temperature, which can be attributed to the various coordination environments of Cd(II), solvent molecules and different packing interactions in these polymers.  相似文献   

10.
Four coordination polymers based on AgI/3-sulfobenzoate/N-donor ligands, [Ag2Na2(3-sb)2(H2O)7]n (1), {[Ag2(3-sb)(apy)]·(H2O)}n (2), {[Ag2(4,4′-bipy)2(H2O)3]·[Ag2(4,4′-bipy)2(H2O)2]·2(3-sb)·4(H2O)}n (3) and {[Ag(3-sb)(bpe)(H2O)][Ag(bpe)(H2O)]·3(H2O)}n (4) where 3-sb is 3-sulfobenzoate, apy is 2-aminopyridine, bipy is 4,4′-bipyridine and bpe is 1,2-bis(4-pyridyl)ethylene, were prepared and characterized, and their fluorescence and electric conductivity properties were studied. Complex 1 is a 3D architecture in which 3-sb ligands exhibit μ41(O1,O2-Ag): κ1(O3,O5-Na) trans-trans coordination mode. The molecular structure of 2 is a 2D layer. Complexes 3 and 4 are cation-anion species and 1D polymers. In these complexes hydrogen bonds provide additional assembly forces, giving 3D hydrogen bonding networks for 1 and 3, and 2D layers for 2 and 4. Abundant weak interactions, such as Ag-Ag interactions in 1-3, Ag-π interactions in 1-4, π-π interactions in 1, 3-4, and C-H···π interactions in 3-4, also can be found. The weak interactions are strongly related to the fluorescence and electric conductivity properties, providing the way for understanding the relationship between structures and properties.  相似文献   

11.
Three new mercury(II) coordination polymers, [Hg2(μ-bpa)(μ-SCN)2(μ-CH3COO)2]n (1), [Hg2(μ-4-bpdb)1.5(μ-CH3COO)(μ1,1- SCN)(μ1,3-SCN)(SCN)]n · CH3CN (2) and [Hg(μ-3-bpdb)(CH3COO)2]n (3) {(bpa = 1,2-bis(4-pyridyl)ethane, 4-bpdb) = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene and 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, have been synthesized and characterized by CHN elemental analysis and IR spectroscopy. The single crystal X-ray data show the compound 1 is two-dimensional coordination polymer as a result of simultaneously bridging 1,2-bis(4-pyridyl)ethane, acetate and thiocyanate ligands. The single-crystal X-ray data of the compound 2 show that the complex to be a two-dimensional polymer, one of Hg atoms has four-coordinate and one of them has seven-coordinate. Three SCN anions show three different coordination modes with terminal, μ1,1-bridge and μ1,3-bridge fashions. The structural studies of compound 3 show the structure may be considered a one-dimensional coordination polymer of mercury(II) consisting of linear chains formed by a bridging 3-bpdb ligand. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

12.
Two copper(II) compounds named [Cu2(μ-O2CCH2C4H3S)4(bipy)]n (1) and [Cu2(O2CCH2C4H3S)4(bpe)2]n (2) [(O2CCH2C4H3S) = 3-thiopheneacetate anion; bipy = 4,4′-bipyridine and bpe = 1,2-bis(4-pyridyl)ethylene] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 consists of binuclear paddle wheel SBUs connected by bridging bipy ligands resulting on a 1D polymeric chain. On the other hand, compound 2 contains two crystallographically independent copper(II) centers coordinated by 3-thiopheneacetate ions in a monodentate fashion and by bpe ligands acting in a bridging mode to form 1D polymeric chains. In both cases, the 1D polymeric chains are linked through non-classical hydrogen bondings C-H···O, that apparently control the crystal packing.  相似文献   

13.
Four new complexes, [Hg(L)Cl2]2 (1), [Hg(L)Br2]2 (2), [Hg(L)I2(DMF)2]n (3), and [HgLCl(SCN)]n (4) (L = N,N-bis-(3-pyridyl)isophthalamide) were obtained through the self-assembly of a rigid conjugated clamp-like bis-pyridyl-bis-amide ligand L with HgX2 (X = Cl for 1, Br for 2, I for 3, and Cl for 4 with the addition of KSCN) and characterized by single crystal X-ray diffraction, elemental analysis, IR spectrum, etc. Employments of different anions result in different structures. Complexes 1 and 2 feature bimetallic macrocycle formed by coordinating two Hg(II) metal centers by two ligands which are in syn-syn conformation. The macrocyclic subunits further self-assemble into a porous macrocycle structure via the hydrogen-bonding and π-π stacking interactions. Introduction of I and SCN ions bring about stronger steric hindrance effect. Complexes 3 and 4 are polymers with infinite 1D polymeric chain in herringbone fashion and the hydrogen-bonding interactions and π-π stacking interactions between the parallel benzene rings and the pyridyl rings stabilize the supromolecular framework. Furthermore, we measured their fluorescent properties in the solid state at room temperature and XRD properties also have been determined.  相似文献   

14.
The reaction of Cd(NO3)2 and CF3COONH4 with bpe (trans-1,2-(bis(4-pyridyl)ethene)) ligands was investigated for a light-induced solid-state [2+2] cycloaddition reaction. The three structures (1 [Cd(bpe)2(CF3COO)2]n, 2 [Cd(bpe)2(NO3)2]n, and 3 [Cd(NO3)(μ-NO3)(H2O)(bpe)1.5]n) formed in light while only compound 1 (or 1-dark) was formed in the dark. All three compounds were completely transformed to the final [2+2] cycloaddition products containing rctt-tetrakis(4-pyridyl)cyclobutane (rctt-tpcb; rctt means regional cis, trans, and trans of the four pyridyl groups attached to the cyclobutane ring) in solution under a natural light after 4 weeks. Among the final products, only one 3-D structure (4 [{Cd(rctt-tpcb)2(NO3)2}{Cd(rctt-tpcb)2(OH)2}]n) with a good crystallinity was determined by the X-ray diffraction technique. These observations were also in line with the spectroscopic results such as 1H NMR. Meanwhile, 3 was also prepared separately and exposed to natural light. X-ray and NMR studies showed that 3 was completely transformed to 4 containing rctt-tpcb by a light-induced cycloaddition reaction for the 4 weeks. The reaction progress was further monitored by fluorescent spectroscopy. 1-dark also underwent the solid-state [2+2] cycloaddition under the natural light over four weeks.  相似文献   

15.
The dinuclear and trinuclear copper(II) complexes [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 · [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1) and [Cu3(L)2(OH)2(H2O)2](NO3)2 (2) (HL=2-[2-(α-pyridyl)ethyl]imino-3-butanone oxime and phen=1,10-phenanthroline) were prepared and their crystal structures have been determined by X-ray crystallography. Complex 1 is composed of [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 (1a) and [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1b). In 1a and 1b, one oximato of L and one hydroxo group bridge two copper(II) ions. The linear trinuclear cation [Cu3(L)2(OH)2(H2O)2]2+ in 2 is centrosymmetric, and one oximato and one hydroxo group bridge the central and terminal copper(II) ions. The strong antiferromagnetic interactions within the dinuclear and trinuclear complexes 1 and 2 have been observed (2J=∼−900 cm−1 for 1 and 2, respectively, H=−2JS1·S2).  相似文献   

16.
Three novel complexes [Mn(atza)2(H2O)4] (1), [Mn(nptza)2(CH3OH)4] (2), and [Mn(a4-ptz)2(H2O)2]n · 2nH2O] (3) [atza = 5-aminotetrazole-1-acetato, nptza = 5-[(4-nitryl)phenyl] tetrazole-1-acetato, a4-ptz = 5-[N-acetato(4-pyridyl)] tetrazole] containing carboxylate-tetrazolate ligands have been synthesized and characterized by element analysis. X-ray crystallography shows that complexes 1 and 2 both contain mononuclear structure. The complex 3 is a 1D polymeric chain structure. Compounds 1-3 are self-assembled to form supramolecular structures through hydrogen bonds interactions.  相似文献   

17.
Two new squarato-bridged Fe(II) polymeric networks of molecular formula [Fe(squarate)(bpp)2(H2O)2] (1) and [Fe(squarate)(bpee)(H2O)2] (2) [bpp = 1,3-bis(4-pyridyl)propane; bpee = 1,2-bis(4-pyridyl)ethylene; ] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature (300-2 K) magnetic measurements. Complex 1 is a 1D coordination chain of Fe(H2O)2 units connected by μ-O,O″ squarate dianions with monocoordinated bpp ligands dangling from the polymer. These 1D chains ultimately transform to a thick 2D layer through π-π interaction of pyridyl rings as well as through hydrogen bonds. Whereas structural determination of complex 2 reveals an inclined interpenetrated 3D architecture. Magnetic data for both the complexes 1 and 2 have been fitted using the Fisher formula for S = 2 system and show antiferromagnetic coupling for both the complexes. The best fit parameters are J = −0.40 cm−1, g = 2.30 and R = 0.01 for complex 1 and J = −0.49 cm−1, g = 2.08 and R = 1.9 × 10−3 for complex 2.  相似文献   

18.
Using a racemic mixture of the tridentate ligand, (((2-pyridyl)ethylamine)methyl)phenolate ion (L) and , NCS, (NC)2N, OAc as coligands, complexes having the formula [Ni(L)(N3)] (1), [Ni(L)(NCS)]2 (2), [Ni2(L)2(OAc)(N(CN)2)]n (3) were prepared and structurally characterized. In 1, Ni(II) has a square planar geometry and phenolate oxygen is involved in dipolar ?Nδ+ interaction with electrophilic central nitrogen atom of coordinated azide ion. Complex 2 is dimeric in nature and nickel(II) is penta-coordinated. Compounds 1 and 2 exist as centrosymmetric dimers made up of a pair of R and S enantiomers of L. In 3, an acetate and phenoxo bridged dinickel complex is present which is further linked to a zig-zag coordination polymer by the dicyanamide ion. In a given chain of 3, both L have same enantiomeric form and either RR or SS dimers are repeated along the chain. The magnetic properties are described.  相似文献   

19.
The hydrothermal reaction of ZnCl2 with 5-(4-pyridyl)tetrazole afforded the 2D metal-organic coordination framework [Zn(OH)(4-ptz)] (1) and the mononuclear complex [Zn(4-ptz)2(H2O)4]?2(H2O) (2) [4-ptz = 5-(4-pyridyl)-tetrazolate]. Compound 1 consists of a zig-zag bidimensional network formed by rectangular (4,4) grid sheets. Molecules of 2 form a 3D extended network of hydrogen bonding involving water molecules and the tetrazolate ligand. In addition, compound 1 exhibits strong fluorescence at room temperature in the solid state.  相似文献   

20.
Three mixed ligands coordination polymers (CPs) [Ag1.5(apym)(nta)0.5]n (1), [(NH4)Ag2(mapym)(nta)·(H2O)3]n (2), [Ag2(dmapym)3(Hnta)]n (3) (apym = 2-aminopyrimidine, mapym = 4-methyl-2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, H3nta = nitrilotriacetate) were synthesized and characterized. For 1-3, as the substituents change from H to one methyl and two methyl groups, the dimensionalities of 1-3 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 1, the μ2-apym ligands link the Ag(I) ions to form a 1D double-chain incorporating ligand unsupported Ag···Ag interaction. The nta3− ligands extend the 1D double-chain into a 3D framework. In 2, one heptadentate nta3− ligand binds four Ag(I) ions and incorporates μ2-mapym ligand to link metal centers to form a 2D sheet which can be simplified to be a 103 net. Complex 3 features a 1D chain structure incorporating Hnta2− and monodentate dmapym ligands. The substituents on the pyrimidyl ring intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the CPs. The photoluminescent properties of 1-3 were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号