首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chelating behavior of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) (H2dapa) towards manganese(II), cadmium(II) and oxovanadium(IV) ions has been studied by elemental analyses, conductance measurements, magnetic properties and spectral (IR, 1H NMR, UV-Vis and EPR) studies. The IR spectral studies suggest the pentadentate nature of the ligand with pyridine nitrogen, two azomethine nitrogens and two carbonyl oxygen atoms as the ligating sites. Six coordinate structure for [VO(H2dapa)]SO4 · H2O and seven coordinate structures for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)Cl2] · H2O complexes have been proposed. Pentagonal bipyramidal geometry for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)(Cl2)] · H2O complexes was confirmed by single crystal analysis. The X-band EPR spectra of the oxovanadium(IV) and manganese(II) complexes in the polycrystalline state at room (300 K) and also at liquid nitrogen temperature (77 K) were recorded and their salient features are reported.  相似文献   

2.
The ligand bis(1-methylimidazol-2-yl)ketone (bik) (1) was applied in the synthesis of mononuclear manganese(II) complexes. The complexes [Mn(bik)2Cl2] (2), [Mn(bik)2(OH2)Br]Br × H2O (3b) and [Mn(bik)3](ClO4) (4) were characterised by X-ray crystallography, ESR and UV-Vis methods.  相似文献   

3.
A family of four new phenoxo-bridged binuclear manganese(III) complexes of the general formula, [Mn(L)(X)]2 where L = [N,N′-bis(salicylidene)]propane-1,2-diamine and X = salicylaldehyde anion (sal) (1); NCS (2); NCO (3) and [Mn(L′)(N3)]2·2C2H5OH (4) where L′ = [N,N′-bis(2-hydroxyacetophenylidene)]propane-1,2-diamine has been prepared. The syntheses have been achieved by reacting manganese perchlorate with 1,2-diaminopropane and salicylaldehyde (or 2-hydroxyacetophenone for 4) or along with the respective pseudohalides so that the tetradentate Schiff base H2L or H2L′ is obtained in situ to bind the Mn(III) ion. The complexes have been characterized by IR spectroscopy, elemental analysis, crystal structure analysis and variable-temperature magnetic susceptibility measurements. The single crystal X-ray diffraction studies show that the compounds are isostructural containing dimeric Mn(III) units with bridging phenolate oxygen atoms. Low temperature magnetic studies indicate that the complexes 1-3 exhibit intradimer ferromagnetic exchange as well as single-molecule magnet (SMM) behavior while complex 4 is found to undergo an intradimer antiferromagnetic coupling.  相似文献   

4.
The preparation and characterization of manganese(III) complexes containing the quadridenate ligand, N,N′-bis(aminobenzylidene)-1,2-ethanediamine (H2amben), and its previously unreported analogue, N,N′-bis(2-amino-5-nitro-benzylidene)-1,2-ethanediamine (H2nitroamben), are described. The new manganese(III) halide/pseudohalide complexes, Mn(amben)X · nH2O and Mn(nitroamben)X · nH2O (X = Cl, Br, I, NCS; n =  0.5 or 1), were isolated as red-brown, microcrystalline solids, which were characterized fully.  相似文献   

5.
Three polymeric o-dioxolene chelated manganese(III) complexes, {[MnIII(H2L1)(Cl4Cat)2][MnIII(Cl4Cat)2(H2O)2]} (1) (L1 = N,N′-bis(2-pyridylmethyl)-1,4-butanediamine, Cl4Cat = tetrachlorocatecholate dianion], {[MnIII(H2L1)(Br4Cat)2][MnIII(Br4Cat)2(H2O)2]·4DMF}∞, (2) and {[MnIII(H2L2)(Br4Cat)2][MnIII(Br4Cat)2(DMF)2]} (3) (L2 = N,N′-bis(2-pyridylmethyl)-1,6-hexanediamine, Br4Cat = tetrabromocatecholate dianion) have been synthesized and structures were determined by X-ray crystallography. All the complexes were fully characterized by various spectroscopic techniques and their electronic properties are described. It was found that the simple protonation or deprotonation of the bridging ligand (L1 or L2) coordinated to metal-dioxolene chromophore induce a change in the oxidation state of the coordinated dioxolene ligand without affecting the metal oxidation state. As a result, drastic change in the optical absorption properties of the complexes is observed in the visible and near-IR region as the transformation involves semiquinone-catecholate ligands. Moreover, all three complexes undergo thermally induced valence tautomerism in solution. For all the complexes, on increasing the temperature, the intensity of the lower energy Inter Valence Charge Transfer (IVCT) band at about 1930 nm increases with corresponding decrease of 600 nm band with an isosbestic point at 1820 nm due to the formation of mixed valence species MnII(X4SQ)(X4Cat) from (X = Cl or Br) by the transfer of one electron from Cat2− to MnIII center.  相似文献   

6.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

7.
The ligand Hpyramol (Hpyramol=4-methyl-2-N-(2-pyridylmethyl)aminophenol) is found to undergo an oxidative dehydrogenation of its amine function to an imine group upon coordination with iron(II) chloride and manganese(II) perchlorate. X-ray diffraction analyses for both complexes shows differences in the coordination geometry of the complexes most likely because of the two different counter-ions namely the strong coordinating chloride anions and the weak coordinating perchlorate anions. The coordination sphere of the iron(III) complex in [FeCl2(pyrimol)(MeOH)](MeOH) is best described as a distorted octahedral FeN2O2Cl2 chromophore, while the manganese(II) ions in [Mn(ClO4)(pyrimol)(Hpyrimol)]2 are in a distorted octahedral MnN4O2 environment with a 2:1 ligand to metal ratio instead of 1:1.  相似文献   

8.
In order to assess the changes in the redox activity of a metal ion that result from inductive effects, three electronically modified derivatives of the ligand, N-benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LH), have been prepared: N-(4-nitro)benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LNO2), N-(4-chloro)benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LCl), and N-(4-methoxy)benzyl-N,N′-bis(2-pyridylmethyl)-1,2-ethanediamine (LOMe). Due to the lack of a fully conjugated π-system between the 4-benzyl substituent and the N-donors, the electronic perturbation should influence a bound metal ion’s redox properties through primarily inductive pathways. The organic ligands react with MnCl2 to form mononuclear complexes with the general formula [Mn(LR)Cl2]. The parent ligand, LH, and its three derivatives each coordinate Mn(II) ions in a cis-α conformation, with the amine N-donors installed trans to the Mn-Cl bonds. Despite its distance from the metal ion, the electron-donating or - withdrawing group has a notable impact on both the metrical parameters of the Mn(II) compounds and the Mn(III/II) reduction potential. A single inductive perturbation can vary the reduction potential by as much as 50 mV.  相似文献   

9.
Restoration of electron flow and oxygen-evolution quantity of Mn-depleted photosystem 2 (PS2) was performed with using synthetic manganese complexes Mn(im)6Cl2, Mn(im)2Cl2, Mn(5-Clsalgy)2, and Mn(salgy)2 instead of original manganese cluster for reconstruction of electron transport and oxygen evolution.  相似文献   

10.
Cyclic and square wave voltammetry (−1500 to 1500 mV) of {Mn[μ-(C6H5)2NC4O3]2[H2O]4}n [manganese(II) diphenylaminosquarate] (1) and [Mn(μ-C6H5C4O3)(C6H5C4O3)(H2O)3]n [manganese(II) phenylsquarate] (2) at a gold disk electrode in dimethylsulfoxide (DMSO) and dimethylformamide (DMF), reveal several couples attributable to both ligand and metal-based redox processes. For the manganese(II) phenylsquarate in DMF, the metal-based peaks are more numerous and readily discernible than in DMSO. In either of the solvents, the ligand-based peaks always occur at more positive or more negative potentials than the metal-based ones. In 1 and 2, Mn(II)/Mn(0), Mn(III)/Mn(II), Mn(IV)/Mn(III) and Mn(V)/Mn(IV) couples are observed. However, the manganese redox peaks appear at more negative potentials in 1.  相似文献   

11.
Trinuclear Cu(II)-pyrazolates of the general formula (Bu4N)2[Cu33-Cl)2(μ-4-R-pz)3Cl3] (pz=pyrazolato anion, R=Cl, Br, I, Me), 1-4, have been prepared and characterized by X-ray diffraction and/or 1H NMR, IR, UV-Vis spectroscopy and elemental analysis. Their structure and spectroscopic properties match the ones of the parent unsubstituted complex (Bu4N)2[Cu33-Cl)2(μ-pz)3Cl3], indicating that 4-substitution of the pyrazole ligands with halogen or methyl groups does not induce structural variation. In contrast, dinuclear complexes (Bu4N)4[Cu2(μ-3-Me-pz)2Cl4]Cl2 · 4H2O, Cu2(μ-Cl)(μ-3,5-Me2-pz)(3,5-Me2-pzH)4Cl2, Cu2(μ-Cl)(μ-OH)(3-Me-5-Ph-pzH)4Cl2 · 3-Me-5-Ph-pzH and Cu2(μ-Cl)2(3,5-Ph2-pzH)4Cl2, 5-8, have been prepared with 3- and 3,5-substituted pyrazoles by the same or similar synthetic protocols.  相似文献   

12.
Adducts formed by [Mn(2,6-dmb)2(H2O)3]n · nH2O, 2,6-dmb=2,6-dimethoxybenzoate(1-), Mn(2,4-dhb)2 · 8H2O, Mn(2,5-dhb)2 · 4H2O or Mn(2,6-dhb)2 · 8H2O, dhb=dihydroxybenzoate(1-), and 2,2-bipyridine (bpy), 4,4-dimethyl-2,2-bipyridine (Me2bpy) or 4,7-dimethyl-1,10-phenanthroline (Me2phen) were isolated in the solid state and characterised by IR, EPR and thermogravimetry. Two of them, [Mn(2,6-dhb)2(bpy)2] (1) and [Mn2(2,6-dmb)4(Me2Phen)2(H2O)2] · 2EtOH (2), were studied by single crystal X-ray diffraction. The adduct 1 is mononuclear and consists of hexa-co-ordinate manganese(II) ions bound to two bipyridine and two 2,6-dihydroxybenzoate ligands in a cis-octahedral arrangement. The complex 2 exhibits a dinuclear structure in which two manganese(II) ions share two carboxylate groups adopting a rather uncommon single-atom bridging mode. The results allow us to conclude that weak, e.g., hydrogen bonding and stacking interactions govern the type of structure, monomeric or dimeric. The spectral features of the complexes are discussed. In particular, the solid-state EPR features of the complexes are interpreted in terms of D, E and Hmax, the high-field resonance. For the monomeric species, the higher is the D value, the higher is Hmax.  相似文献   

13.
The interaction between saccharose and manganese in different oxidation states was studied in alkaline media by polarographic, potentiometric, ESR spectroscopic and UV-Vis spectrophotometric methods. The results showed that stable manganese(II) and manganese(III) complexes and a complex of manganese(II,III) in a mixed oxidation state were formed with the composition [MnIIL(OH)2], [Mn2IIIL2(OH)8]2− and [MnIIMnIIIL2(OH)6], respectively. The manganese(II)-saccharose complex was shown to dimerize in alkaline media. The stability constants of the Mn(II,III) and Mn(III) complexes were determined. The oxidation of the manganese(II)-saccharose complex by a stoichiometric amount of K3 [FeCN]6 resulted in the formation of the manganese(III) and manganese(IV) complexes. However, oxidation by molecular oxygen only yielded the manganese(III) complex which reduced spontaneously in inert atmosphere to the mixed valence Mn(II,III) complex. The latter was able to be oxidized again by oxygen to the Mn(III) complex. This process proved to be reversible and could be repeated several times.  相似文献   

14.
The metal complexation properties of a functionalized N3O2 donor ligand H2L2, where H2L2 stands for 2,6-diacetyl-4-carboxymethyl-pyridine bis(benzoylhydrazone), are investigated by structural and spectroscopic (IR, ESI-MS and EPR) characterization of its Mn(II) and Co(II) complexes. The ligand H2L2 is observed to react essentially in the same fashion as its unmodified parent H2L1 producing mixed-ligand [M(H2L2)(Cl2)] complexes (M = MnII (1), CoII (3)) upon treatment with MCl2. Complexes [M(HL2)(H2O)(EtOH)]BPh4 (M = Mn 2, M = Co 4), incorporating the supporting ligand in the partially deprotonated form (HL2), are formed by salt elimination of the [M(H2L2)(Cl2)] compounds with NaBPh4. Compounds 2 and 4 are isostructural featuring distorted pentagonal-bipyramidal coordinated MnII and CoII ions, with the H2O and EtOH ligands bound in axial positions. Intermolecular hydrogen bonding interactions of the type M-OH2?O-M involving the H2O ligands and the carbonyl functions of the supporting ligand assembles the complexes into dimers. Temperature-dependent magnetic susceptibility measurements (2-300 K) show a substantially paramagnetic Curie behavior for the Mn2+ compound (2) influenced by zero-field splitting and significant orbital angular momentum contribution for 4 (high-spin CoII). The exchange coupling across the MnII-OH2?O-MnII bridges in 2 was found to be less than 0.1 cm−1, suggesting that no significant intradimer exchange coupling occurs via this path.  相似文献   

15.
Manganese(II) complexes, Mn2L13(ClO4)4, MnL1(H2O)2(ClO4)2, MnL2(H2O)2(ClO4)2, and {(μ-Cl)MnL2(PF6)}2 based on N,N′-bis(2-pyridinylmethylene) ethanediamine (L1) and N,N′-bis(2-pyridinylmethylene) propanediamine (L2) ligands have been prepared and characterized. The single crystal X-ray diffraction analysis of Mn2L23(ClO4)4 shows that each of the two Mn(II) ion centers with a Mn-Mn distance of 7.15 Å are coordinated by one ligand while a common third ligand bridges the metal centers. Solid-state magnetic susceptibility measurements as well as DFT calculations confirm that each of the manganese centers is high-spin S = 5/2. The electronic structure obtained shows no orbital overlap between the Mn(II) centers indicating that the observed weak antiferromagentism is a result of through space interactions between the two Mn(II) centers. Under different reaction conditions, L1 and Mn(II) yielded a one-dimensional polymer, MnL1(H2O)2(ClO4)2. Ligand L2 when reacted with manganese(II) perchlorate gives contrarily to L1 mononuclear MnL2(H2O)2(ClO4)2 complex. The analysis of the structural properties of the MnL2(H2O)2(ClO4)2 lead to the design of dinuclear complex {(μ-Cl)MnL2(PF6)} where two chlorine atoms were utilized as bridging moieties. This complex has a rhomboidal Mn2Cl2 core with a Mn-Mn distance of 3.726 Å. At room temperature {(μ-Cl)MnL2(PF6)} is ferromagnetic with observed μeff = 4.04 μB per Mn(II) ion. With cooling, μeff grows reaching 4.81 μB per Mn(II) ion at 8 K, and then undergoes ferromagnetic-to-antiferromagnetic phase transition.  相似文献   

16.
Complexes formed between Mn(II) ion and acetohydroxamic acid (HAha), benzohydroxamic acid (HBha), N-methyl-acetohydroxamic acid (HMeAha), DFB model dihydroxamic acids (H2(3,4-DIHA), H2(3,3-DIHA), H2(2,5-DIHA), H2(2,5-H,H-DIHA), H2(2,4-DIHA), H2(2,3-DIHA)) and two trihydroxamate based natural siderophores, desferrioxamine B (H4DFB) and desferricoprogen (H3DFC) have been investigated under anaerobic condition (and some of them also under aerobic condition). The pH-potentiometric results showed the formation of well-defined complexes with moderate stability. Monohydroxamic acids not, but all of the dihydroxamic acids and trihydroxamic acids were able to hinder the hydrolysis of the metal ion up to pH ca. 11. Maximum three hydroxamates were found to coordinate to the Mn(II) ion, but presence of water molecule in the inner-sphere was also indicated by the corresponding relaxivity values even in the tris-chelated complexes. Moreover, prototropic exchange processes were found to increase the relaxation rate of the solvent water proton over the value of [Mnaqua]2+ in the protonated Mn(II)-siderophore complexes at physiological pH. The much higher stability of Mn(III)-hydroxamate (especially tris-chelated) complexes compared to the corresponding Mn(II)-containing species results in a significantly decreased formal potential compared to the Mn(III)aqua/Mn(II)aqua system. As a result, air oxygen becomes an oxidizing agent for these manganese(II)-hydroxamate complexes above pH 7.5. The oxidation processes, followed by UV-Vis spectrophotometry, were found to be stoichiometric only in the case of the tris-chelated complexes of siderophores, which predominate above pH 9. ESI-MS provided support about the stoichiometry and cyclic-voltammetry was used to determine the stability constants for the tris-chelated complexes, [Mn(HDFB)]+ and [MnDFC].  相似文献   

17.
197Au Mössbauer spectra of the series of complexes of gold(I), Au(nucl)2Cl and gold(III), Au(nucl)Cl3, Au(nucl - H+)Cl2 and Au(nucl)2Cl3 were measured at 4.2 K, (nucl = nucleoside, e.g. guanosine(guo), inosine(ino), triacetylguanosine-(trguo) and triacetylinosine(trino)). It is concluded from the spectra that the gold(I) nucleosides have linear ClAuN coordination, with one coordinated nucleoside molecule per gold(I) ion, bound via the N(7) atom. The σ-donor strength of the guo ligand is somewhat higher than that of the ino ligand. The complexes Au(ino)Cl3 and Au(guo)Cl3, in the series Au(nucl)Cl3, have significantly higher IS and QS values than the corresponding complexes with the triacetylnucleosides, Au(trino)Cl3 and Au(trguo)Cl3. This may be explained by a weak O(6)-interaction with gold(III), in a nearly trigonal bipyramidal configuration in the former case and by the presence of the strongly electron withdrawing acetyl groups in the latter, which reduces the donor strength of their N(7) atoms. The complexes of the Au(nucl - H+)Cl2 series all appear to have a polymeric structure. The gold(III) ion is bound to the N(7) atom and the O(6) or the N(1) atom of the nucleosides. Finally, the Mössbauer spectra of the series Au(nucl)2)Cl3 can only be explained by assuming approximately octahedral AuN2Cl4 structures, with bridging chlorine atoms.  相似文献   

18.
Reaction of the oxo-molybdenum(V) precursor [MoTp*(O)Cl2] [Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate] with H2NC6H4R-4 (R = OEt; OPr) in refluxing toluene in the presence of Et3N afforded the binuclear oxo-bridged oxo(arylimido) molybdenum(V) complexes [Tp*Mo(O)Cl](μ-O)[Tp*Mo(NC6H4OR-4)Cl]. Surprisingly, a similar reaction between [MoTp*(O)Cl2] and C6H5NH2 yielded the previously reported compound [{MoTp*(O)Cl}2(μ-O)] as the only product. The new compounds were characterized by microanalytical data, mass spectrometry, IR and 1H NMR spectroscopy. Cyclic voltammetric studies of the new compounds, of the previously reported compounds [Tp*Mo(O)Cl](μ-O)[Tp*Mo(NAr)Cl] (Ar = C6H4OMe-4, C6H4F-3, C6H4Cl-4, C6H4Br-4, and C6H4I-3), and of [{MoTp*(O)Cl}2(μ-O)] revealed a reversible one-electron oxidation process that is little affected by the nature of the substituent on the aryl group, whereas it is greatly affected by replacement of the imido ligand with an oxo ligand. The [{MoTp*(O)Cl}2(μ-O)] compound also shows a one-electron reduction process.  相似文献   

19.
1,10-Phenanthroline hydrogen phthalato manganese(II) dimer [Mn2(Hphth)2(phen)4] · 2Hphth · 6H2O (1), monomeric phenanthroline phthalato manganese(II) monomer [Mn(phth)(phen)2(H2O)] · 2.5H2O (2), 2,2′-bipyridine phthalato manganese(II) polymer [Mn(phth)(bpy)(H2O)2]n (3) and 1,10-phenanthroline maleato polymer [Mn(male)(phen)(H2O)2]n · 2nH2O (4) (H2phth = o-phthalic acid, male = maleic acid, phen = 1,10-phenanthroline and bpy = 2,2′-bipyridine) have been synthesized and characterized spectroscopically and structurally. Each Mn(II) atom in dimeric 1 is octahedrally coordinated by two oxygen atoms of phthalate anions and by two cis-phenanthroline ligands. The hydrogen phthalato anion bridges the Mn(II) ions through the deprotonated carboxyl groups, while the carboxylic acid group remains free. In the monomeric 2, the Mn(II) ion is octahedrally surrounded by four nitrogen atoms from two cis-phen ligands, one carboxyl oxygen from a monodentate phth ion, and one coordinated water molecule. The dimeric phthalato complex 1 can be cleaved into monomer 2 under heating with deprotonation, and the course of the reaction can be qualitatively traced by IR spectra. The phthalate group in the complex 3 binds to two manganese atoms through the vicinal carboxyl-oxygen atoms in syn-syn bridging mode. The Mn(II) atoms are linked by the phthalate group to yield a one-dimensional chain running along the a-axis. The coordination polymer 3 can be obtained from the reaction of dichloro dibipyridine manganese with phthalate under heating. In polymer 4, the manganese atom is six-coordinated by two nitrogen atoms from phen, two oxygen atoms from the coordinated water molecules and two oxygen atoms from two different maleate dianions. Each maleato unit links two neighboring manganese atoms to yield one-dimensional chain along b-axis in bis-monodentate mode. The single-chain polymer 4 prepared at low temperature can be converted to double-chain coordination polymer [Mn(male)(phen)]n · nH2O (5) with dehydration in warm solution.  相似文献   

20.
The binuclear manganese (IV) [Mn2(Hsal)4(OH)4] (H2sal = salicylic acid) complex has been obtained from a complex reaction mixture in methanol consisting of Mn(II)(OAc)2 · 4H2O, GS ( a reagent obtained by refluxing glycine and salicylaldehyde in 1:1 molar ratio in methanol), monosodium salicylate and pyridine. The compound contains a distorted octahedral MnO6 coordination unit of potential importance to high oxidation state manganese bimolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号