首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction between nickel(II) nitrate and potassium phosphorus-1,1-dithiolates (di-sec-butyl and di-iso-butyl) in methanol yields 2:1 complexes which were characterized by FT-IR and NMR spectroscopy. 2:1 pyrazole adducts of both compounds were also obtained.The X-ray diffraction analysis of the compounds reveals square planar, four-coordination geometry for the homoleptic compounds and a six-coordinated distorted octahedral geometry for the adducts. In Ni[S2P(OBus)2]2 the molecules are associated through C-H?O hydrogen bonds (2.652 Å), and in Ni[S2P(OBui)2]2 the molecules are associated through C-H?S hydrogen bonds (2.948 Å). The pyrazole adducts are associated through N-H?O bonds and N-H?S bonds from the pyrazole nitrogen atoms, to form supramolecular assemblies. Thus, Ni[S2P(OBus)2(Pz)2]2 (Pz = pyrazole) forms bi-dimensional layers through N-H?O and N-H?S bonds (2.502 and 2.965 Å, respectively), whereas Ni[S2P(OBui)2(Pz)2]2 forms linear chains with N-H?S bonds 2.728 Å. The dithiophosphato groups behave as isobidentate chelating ligands.  相似文献   

2.
Two new ion-pair complexes, [FBrBzPyN(CH3)2]2[Ni(mnt)2] (1) and [FBrBzPyN(CH3)2][Ni(mnt)2] (2) (mnt2− = maleonitriledithiolate, [FBrBzPyN(CH3)2]+ = [1-(4′-fluoro-2′-bromobenzyl)-4-dimethylaminopyridinium]) have been prepared and characterized by elemental analyses, UV, IR, single crystal X-ray diffraction and magnetic susceptibility. The cations (D) and the anions (A) in 1 stack into a 1D alternating column (i.e., of type ?DDADDADD?) via short S?Br, N?F, C?N interactions, and C-H?Br hydrogen bonds. The cation-cation π?π stacking interactions within the columns give further rise to a 2D network structure. Compound 2 forms a 3D structure in which the Ni(III) ions stack into a uniform 1D zigzag magnetic chain through Ni?S, Ni?Ni, or π?π interactions with a Ni?Ni distance of 4.024 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 is expected to be diamagnetic, and 2 exhibits an interesting spin-gap transition (Δ/kb = 460.6 K) around 155 K.  相似文献   

3.
Oxorhenium(V) complexes with ‘3+1’ mixed ligands, [ReO(SSS)L], where SSS is η3-(SCH2CH2SCH2CH2S), L = η1-(C6H4COOH-4-S), η1-(C6H4CONHCH2COOEt-4-S), η1-(C6H4CONHCH(CH3)COOEt-4-S), and η1-(C6H4CONHCH(CH2Ph)COOEt-4-S), have been synthesized. These L ligands and [ReO(SSS)L] complexes were characterized by IR, 1H NMR, 13C NMR, and MAS spectrometers. Molecular structure of [ReO(SSS){η1-(C6H4COOH-4-S)}] complex was determined to be a distorted square pyramidal by single crystal X-ray analytical method.  相似文献   

4.
Reaction of 2 equiv of the sodium salt of ethyl pyrazole-4-carboxylate, with 1 equiv of 2,6-dibromopyridine, in diglyme at 130 °C for 5 days yields 2,6-di[4-(ethylcarboxy)pyrazol-1-yl]pyridine (L1), with 2-bromo-6-[4-(ethylcarboxy)pyrazol-1-yl]pyridine (L2) as a significant byproduct. Reduction of L1 with excess NaBH4 in thf affords 2,6-di[4-(hydroxymethyl)pyrazol-1-yl]pyridine (L3) in low yield. The crystalline complex [Fe(L1)2][BF4]2 · 2CF3CH2OH is low-spin at 150 K, while bulk samples with this formula are approximately 10% high-spin and 90% low-spin at room temperature. This ratio does not vary significantly on cooling from its magnetic susceptibility, suggesting that the material might be contaminated by a second, minor high-spin phase. Single crystals of [Fe(L3)2][BF4]2·1.4CH3CN have a mixed spin-state population, with the low-spin state predominating at 150 K. The [Fe(L3)2(BF4)]+ moieties in the lattice associate into 1-D chains through intermolecular O-H?O and O-H?F hydrogen bonding. Bulk samples of [Fe(L3)2][BF4]2 · H2O are fully low-spin below 200 K, but the magnetic data imply the onset of a gradual thermal spin-transition centred above room temperature. DSC and TGA measurements imply that this transition is centred at 322 K, and involves loss of lattice water. Both complexes undergo spin-crossover in (CD3)2CO solution, with transition midpoints near 250 K.  相似文献   

5.
The role of relativistic effects (RE) in the structures of Cd(II) complexes with crown ethers, and the reason the ‘soft’ Cd(II) strongly prefers to bind to SCN through N, are considered. The synthesis and structures of [Cd(18-crown-6)(thiourea)2] (ClO4)2.18-crown-6 (1) and [Cd(Cy2-18-crown-6)(NCS)2] (2) are reported. (18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; Cy2-18-crown-6 = cis-anti-cis-2,5,8,15,18,21-hexaoxatricylo[20.4.0.0(9,14)]hexacosane). In 1 Cd is coordinated in the plane of the crown which has close to D3d symmetry, with long Cd-O bonds averaging 2.688 Å. The two thiourea molecules form relatively short Cd-S bonds that average 2.468 Å, with an S-Cd-S angle of 164.30°. This structure conforms with the idea that Cd(II) can adopt a near-linear structure involving two covalently-bound donor atoms (the S-donors) with short Cd-S bonds, which resembles gas-phase structures for species such as CdCl2. The structure of 2 is similar, with the two SCN ligands N-bonded to Cd, with short Cd-N bonds of 2.106 Å, and N-Cd-N angle of 180°. The crown in 2 forms long Cd-O bonds that average 2.698 Å. Molecular mechanics calculations suggest that a main reason Cd(II) prefers to bind to SCN through N is that when bound through S, the small Cd-S-C angle, which is typically close to 100°, brings the ligand into close contact with other ligands present, and causes steric destabilization. In contrast, the Cd-N-C angles for SCN coordinated through N are much larger, being 171.4° in 2, which keeps the SCN groups well clear of the crown ether. DFT (density functional theory) calculations are used to generate the structures of [Cd(18-crown-6)(H2O)2]2+ (3) and [Cd(18-crown-6)Cl2] (4). In 3, the Cd(II) is bound to only three O-donors of the macrocycle, with Cd-O bonds averaging 2.465 Å. The coordinated waters form an O-Cd-O angle of 139.47°, with Cd-O bonds of 2.295 Å. In contrast, for 4, the Cd is placed centrally in the cavity of the D3d symmetry crown, with long Cd-O bonds averaging 2.906 Å. The Cl groups form a Cl-Cd-Cl angle of 180°, with short Cd-Cl bonds of 2.412 Å. With ionically bound groups on the axial sites of[Cd(18-crown-6)X2] complexes, such as with X = H2O in 3, the Cd(II) does not adopt linear geometry involving the two X groups, with long Cd-O bonds to the O-donors of the macrocycle. With covalently-bound X = Cl in 4, short Cd-Cl bonds and a linear [Cl-Cd-Cl] unit results, with long Cd-O bonds to the crown ether.  相似文献   

6.
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO4)2·6H2O in methanol in 3:1 M ratio at room temperature yields light green [CuL3](ClO4)2·H2O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL3](ClO4)2·0.5CH3CN has been determined which shows Jahn-Teller distortion in the CuN6 core present in the cation [CuL3]2+. Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g|| = 2.262 (A|| = 169 × 10−4 cm−1) and g = 2.069. The Cu(II/I) potential in 1 in CH2Cl2 at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL3]+ in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL3]+ are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 Å while the ideal Cu(I)-N bond length in a symmetric Cu(I)N6 moiety is estimated as 2.25 Å. Reaction of L with Cu(CH3CN)4ClO4 in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL2]ClO4 (2). Its 1H NMR spectrum indicates that the metal in [CuL2]+ is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH2Cl2 at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From 1H NMR titration, the free energy of binding of L to [CuL2]+ to produce [CuL3]+ in CD2Cl2 at 298 K is estimated as −11.7 (±0.2) kJ mol−1.  相似文献   

7.
A new complex [Ni(L)Fe(CN)5NO] · 2H2O (L = 4,6,6-trimethyl-1,9-diamino-3,7-di-aza-nona-3-ene) has been obtained and characterized by means of X-ray crystallographic analysis and magnetochemistry. The Fe(CN)5NO2− anion links to the Ni(L)2+ cation through two bridging cyanide groups in a bent fashion. The intrachain Ni?Ni and interchain Ni?Ni distances are equal to 9.81(8) and 7.75(1) Å, respectively. The magnetic behaviour of the complex indicates the zero field splitting parameter D higher than 3 cm−1 and the average exchange parameter (intra- and interchain) corresponding to direct Ni-Ni magnetic interaction in the crystal lattice equals ∼−0.2 cm−1.  相似文献   

8.
Iron(III) porphinate complexes of phenolate that have NH?O hydrogen bonds on the coordinating oxygen, [FeIII(OEP){O-2,6-(RCONH)2C6H3}] (R = CF3 (1), CH3 (3)) and [FeIII(OEP)(O-2-RCONHC6H4)] (R = CF3 (2), CH3 (4)) (OEP = 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphinato), were synthesized and characterized as models of heme catalase. The presence of NH?O hydrogen bonds was established by their crystal structures and IR shifts of the amide NH band. The crystal structure of 1 shows an extremely elongated Fe-O bond, 1.926(3) Å, compared to 1.887(2) Å in 2 or 1.848(4) Å in [FeIII(OEP)(OPh)]. The NH?O hydrogen bond decreases an electron donation from oxygen to iron, resulting in a long Fe-O bond and a positive redox potential.  相似文献   

9.
《Inorganica chimica acta》2004,357(2):571-580
Treatment of the ligand N-(2-mercaptoethyl)-3,5-dimethylpyrazole with [Pd(CH3COO)2]3 and reaction of [PdCl(μ-med)]2 with pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 produced the following complexes: [Pd(CH3COO)(μ-med)]2, [Pd(μ-med)(py)]2(BF4)2 and [Pd(μ-med)(PPh3)]2(BF4)2. Similar reactions carried out with 2,2-bipyridine (bpy) or 1,3-bis(diphenylphosphino)propane (dppp) produced [Pd(μ-med)(bpy)]x(BF4)x (x=1 or 2) and [Pd(μ-med)(dppp)]x(BF4)x (x=1 or 2). Treatment of [Pd(μ-med)(bpy)]x(BF4)x with [PdCl2(CH3CN)2] produced [Pd3Cl2(μ-med)2(bpy)2](BF4)2. Treatment of [Pd(μ-med)(dppp)]x(BF4)x with [PdCl2(CH3CN)2] produced a mixture of [Pd(μ-Cl)(dppp)]2(BF4)2 and [Pd(μ-med)2(dppp)]2+. X-ray crystal structures of [Pd(μ-med)(PPh3)]2(BF4)2 · 2CH3CN and [Pd(μ-med)(bpy)]2(BF4)2 · 0.5CH3OH are presented.  相似文献   

10.
The oxidation of Ni(PPh3)4 with BF3 · OEt2, H3CCOOH, and F3CCOOH, and that of (PPh3)2Ni(C2H4) with BF3 · OEt2 is studied by EPR spectroscopy. The reaction of the Ni(0) complexes with BF3 · OEt2 gives Ni(II) complexes with which they react to form Ni(I) compounds with covalent Ni-F and Ni-B bonds that transform with excess BF3 · OEt2 into cationic paramagnetic Ni(I) complexes. Acetic acid also adds oxidatively to Ni(PPh3)4 to form a Ni(II) complex that reacts further to give Ni(I) hydride and carboxylate complexes. The Ni(I) hydride is transformed by the acid into the Ni(I) carboxylate with release of hydrogen, the amount of which depends on the rate of acid addition. The following Ni(I) complexes are identified in the reaction medium: [Ni(PPh3)3]BF4, [(PPh3)2Ni(OEt2)]BF4, [(PPh3)Ni(OEt2)n]BF4, (PPh3)2NiBF2, (PPh3)3NiOOCCH3, and [(PPh3)2Ni(OEt2)P(OEt)3]BF4. Oxidation schemes of Ni(0) complexes by Lewis and Brønsted acids are given.  相似文献   

11.
A new compound of formula [Fe(qsal)2][Ni(dmit)2] (1) has been synthesised, structurally and magnetically characterised (qsalH = N-(8-quinolyl)salicylaldimine, dmit2− = 1,3-dithiol-2-thione-4,5-dithiolato). Its structural features and its magnetic behaviour were compared with those of [Fe(qsal)2]-based complexes, and more particularly [Fe(qsal)2][Ni(dmit)2] · 2CH3CN.  相似文献   

12.
A 14-membered tetraaza macrocycle, 2,13-bis(2-carbomethoxyethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane (L2) bearing two N-CH2CH2COOMe groups, and its nickel(II) and copper(II) complexes have been prepared and characterized. The nickel(II) and copper(II) complexes of 2-(2-carbomethoxyethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane (L3) containing one N-CH2CH2COOMe group have also been prepared. The crystal structure of [NiL2](ClO4)2 shows that the complex has a slightly distorted trans-octahedral coordination geometry with two relatively short axial Ni-O (N-CH2CH2COOMe group) bonds (2.136(3) Å). In various solvents, however, a considerable proportion of [NiL2]2+ exists as a square-planar form, in which the functional pendant arms are not involved in coordination. The proportion of the square-planar isomer varies with solvents in the order of nitromethane ? acetonitrile < H2O < DMF ? DMSO. In the case of [CuL2](ClO4)2, only one N-CH2CH2COOMe group is involved in coordination. The N-CH2CH2COOMe group of [NiL3](ClO4)2 is not directly involved in coordination even in the solid state, though the functional group of [CuL3](ClO4)2 is coordinated to the metal ion.  相似文献   

13.
Xanthates, like thiolates, form a variety of complexes with metals in which coordinating sulfur can serve as a hydrogen bond acceptor. Nickel tris xanthate complexes [Ni(xan)3], (xan = o-ethylxanthate, N-(carbamoylmethyl)ethylxanthate) have been synthesized and compared by a combination of X-ray crystallographic and spectroscopic measurements. Recent results from our studies of N-H?S hydrogen bonding interactions in metal-xanthate complexes shows N-S distances to be longer than those in related thiolate complexes, indicative of weaker hydrogen bonds for the xanthates. The complex (Et4N)[N-(carbamoylmethyl)ethylxanthate)] adopts an extended conformation in both the solid state and solution and lacks either intraligand or intermolecular N-H?S hydrogen bonds. The complex (CTA)[Ni(exa)3] exhibits N-H?S hydrogen bonds between the amide group of the counterion and the ligand sulfur. The amide-sulfur N-H?S distance is 3.567 Å.  相似文献   

14.
Syntheses, crystal structures and magnetic properties of two salts, [FBzTPP][Ni(mnt)2](1) and [FBzTPP]2[Cu(mnt)2](2) ([FBzTPP]+ = 1-(4′-fluorobenzyl)triphenylphosphinium, mnt2− = maleonitriledithiolate), are investigated. In 1, the anions and cations stack into well-segregated columns, and the Ni(III) ions form a 1D alternating chain in a [Ni(mnt)2] column through intermolecular Ni?S and π?π interactions with the Ni?Ni distances of 3.939, 4.057 and 4.101 Å, and the C-H?N hydrogen bonds are found between the [Ni(mnt)2] anion and the neighboring [FBzTPP]+ cation. The [Cu(mnt)2]2− anions in 2 do not form a column and no weak interactions exist between the anions duo to isolation of the [FBzTPP]+ cations, while C-H?F and C-H?S hydrogen bonds were found in 2. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 46 K, and antiferromagnetic interaction (θ = −49.0 K) in the high-temperature phase (HT) and spin gap (Δ/kb = 88.2 K) in the low-temperature phase (LT), while 2 shows a very weak antiferromagnetic coupling behavior with θ = −1.33 × 10−2 K.  相似文献   

15.
Two new molecular magnets, [BzPyN(CH3)2][Ni(mnt)2] (1) and [NO2BzPyN(CH3)2][Ni(mnt)2] (2)([BzPyN(CH3)2]+ = 1-benzyl-4-dimethylaminopyridinium, [NO2BzPyN(CH3)2]+ = 1-(4′-nitrobenzyl)-4-dimethylaminopyridinium, and mnt2− = maleonitriledithiolate) have been prepared and characterized by elemental analyses, IR, MS spectra, single crystal X-ray diffraction and magnetic susceptibility. The Ni(III) ions of both 1 and 2 form a 1D zigzag alternating magnetic chain within a column through Ni?S, Ni?Ni, Ni?N, S?S, or π?π interactions. Magnetic susceptibility measurements in the temperature range 1.8-300 K show that 1 exhibits antiferromagnetic behavior, while 2 shows a spin gap transition around 170 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The phase transition for 2 is second-order by determination of DSC analyses.  相似文献   

16.
Two Ni(II) complexes of the dianionic ligands, Mebpb2−, [H2Mebpb = N,N′-bis(pyridine-2-carboxamido)-4-methylbenzene] and Mebqb2−, [H2Mebqb = N,N′-bis(quinoline-2-carboxamido)-4-methylbenzene] have been synthesized and characterized by elemental analyses, IR, and UV-Vis spectroscopy. The crystal and molecular structures of [Ni(Mebpb)], (1), and [Ni(Mebqb)], (2), were determined by X-ray crystallography. Both complexes exhibit distorted square-planar NiN4 coordination figures with two short and two long Ni-N bonds (Ni-N ∼1.84 and ∼1.95 Å, respectively). The electrochemical behavior of these complexes with the goal of evaluating the structural effects on the redox properties has been studied.  相似文献   

17.
Two new 1-(tetrazol-1-yl)cycloalkanes [Cntz] with n = 5 and 6 were synthesised as ligands for iron(II) spin crossover complexes. Just recently, the [Fe(C3tz)6](BF4)2 showed that the rigid cyclopropyl-substituent of the tetrazole yielded a rather abrupt and complete spin transition at T½ ≈ 190 K [1]. Aiming for a deeper insight into the factors governing the spin transition behavior such as abruptness and spin transition temperature we synthesized the two new homologous complexes [Fe(C5tz)6](BF4)2 and [Fe(C6tz)6](BF4)2 which were characterized by XRPD, magnetic susceptibility measurements, DSC, 57Fe-Mössbauer, UV-Vis-NIR and MIR spectroscopy. The magnetic and structural properties of both [Fe(Cntz)6](BF4)2 with n = 5 and 6 are also compared with the [Fe(C3tz)6](BF4)2 and its structural peculiarities are discussed.  相似文献   

18.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

19.
The octanuclear cyano-bridged cluster [(Tp)8Fe4Ni4(CN)12] · H2O · 24CH3CN (1) (Tp = hydrotris(1-pyrazolyl)borate) showing magnetic properties of single-molecule magnet has been synthesized by reaction of [fac-Fe(Tp)(CN)3] with {(Tp)Ni(NO3)} species formed from an equimolar reaction mixture of Ni(NO3)2 · 6H2O and KTp in MeCN. The X-ray analysis of 1 shows molecular cube structure in which FeIII and NiII ions reside in alternate corners. The average intramolecular Fe?Ni distance is 5.124 Å. Out-of-phase ac susceptibility and reduce magnetization measurements show that 1 is a single molecule magnet with ground spin state S = 6 and spin reversal energy barrier U = 14 K. Magnetic hysteresis loops were also observed by applying fast sweeping field.  相似文献   

20.
The reaction of CuCl2 · 2H2O with 2,6-bis(1-phenyliminoethyl)pyridine (referred hereafter as L) in 1:1 molar ratio in methanol or acetronitrile at room temperature afforded distorted trigonal-bipyramidal complex [Cu(κ3-L)Cl2]. On the other hand, the reaction of NiCl2 · 6H2O with 2 equivalents of L gave an octahedral complex [Ni(κ3-L)2]2+, which was isolated as [Ni(κ3-L)2][BF4]2 using NH4BF4. The complexes have been characterized by elemental analyses, FAB-MS, IR, EPR and electronic spectral studies. Molecular structures of both the [Cu(κ3-L)Cl2] (1) and [Ni(κ3-L)2](BF4)2 (2) have been determined by single crystal X-ray analyses. Weak interaction studies on 1 and 2 revealed stabilisation of the crystal packing by inter and intra-molecular C-H?X (X = F, Cl, π) interactions. In complex 2 ortho C-H bond from phenyl rings leads to unexpected C-H?π interaction with nickel α,α′-diimine chelate ring. This provides structural support for metalloaromaticity in the chelate ring of complex 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号