首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of terminal ligands on the structure and nuclearity of copper(II)-pyrazolates has been investigated. Exchange of the chloride ligands of [Cu33-X)(μ-pz)3Cl3]n (X=O, OH; n=2, 1) or [Cu33-Cl)2(μ-pz)3Cl3]2− complexes for cyanate, acetate or bromide ligands maintains the integrity of the triangular species: PPN[Cu33-OH)(μ-pz)3(NCO)3], PPN[Cu33-OH)(μ-pz)3(O2CCH3)3(H2O)] · H2O, Bu4N[Cu33-OH)(μ-pz)3(O2CCH3)3] · 3H2O and (Bu4N)2[Cu33-Br)2(μ-pz)3Br3] have been prepared and characterized by spectroscopic and X-ray diffraction techniques, respectively. In contrast, tetranuclear complexes (Bu4N)2[Cu43-OH)2(μ-4-X-pz)2(μ-O2CPh)2(O2CPh)4] (X=H, Cl, Br, NO2) and the hexanuclear complex (Bu4N)2[Cu63-O)(μ3-OH)(μ-4-NO2-pz)6(μ-O2CPh)3(O2CPh)2(H2O)] · (CH2Cl2)0.5 have been obtained on substitution for benzoate ligands. An attempt to partially substitute the chlorides for tert-butoxide ligands, also provided a tetranuclear complex, (Bu4N)2[Cu4(μ-OH)2(μ-pz)4Cl4], without incorporation of the incoming ligand. Similarly, removal of all chloride ions in the absence of an appropriate substituting ligand leads to higher nuclearity metallacycles [Cu(μ-OH)(μ-pz)]n (n=6, 8, 9, 12, 14).  相似文献   

2.
The reaction between the dirhenium(III,III) anion, [Re2Cl8]2−, and the secondary phosphine, PCy2H, yields a mixture of products as a result of disproportionation, namely, a dirhenium(II,III) chloride-phosphine complex 1,3,6-Re2Cl5(PCy2H)3 (1) and a dirhenium(IV) face-sharing bioctahedral compound with bridging phosphido groups, [Bu4N][Re2(μ-PCy2)3Cl6] (2). The diphenylphosphine analogue of 2, [Bu4N][Re2(μ-PPh2)3Cl6] (3) has been similarly prepared from the reaction of [Re2Cl8]2− with PPh2H. An interesting dirhenium(III,III) complex, [Bu4N]2[Re2(μ-PPh2)2(PPh2H)2Cl6] (4) having both neutral terminal phosphines and anionic phosphido bridges, has also been isolated as an intermediate in the latter system. Crystal structures of 1-4 have been determined by X-ray crystallography. The compounds were also characterized by cyclic voltammetry, IR and 31P NMR spectroscopy.  相似文献   

3.
Acetonitrile is easily displaced from [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (R = 2,6-Me2C6H3 (Xyl) (1a); Me (1b)) upon stirring in THF at room temperature in the presence of [NBu4][SCN]. The resulting complexes trans-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (trans-2a); Me (trans-2b)) are completely isomerised to cis-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (cis-2a); Me (cis-2b)) when heated at reflux temperature. Similarly, the complexes cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(NCO)(Cp)2] (M = Fe, R = Me (4a); M = Ru, R = Xyl (4b); M = Ru, R = Me (4c)) and cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(N3)(Cp)2] (M = Fe, R = Xyl (5a); M = Fe, R = Me (5b); M = Ru, R = Xyl (5c)) can be obtained by heating at reflux temperature a THF solution of [M2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (M = Fe, R = Xyl (1a); M = Fe, Me (1b); M = Ru, R = Xyl (1c); M = Ru, R = Me (1d)) in the presence of NaNCO and NaN3, respectively. The reactions of 5 with MeO2CCCCO2Me, HCCCO2Me and (NC)(H)CC(H)(CN) afford the triazolato complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3C2(CO2Me)2}(Cp)2] (M = Fe, R = Xyl (6a); M = Fe, R = Me (6b); M = Ru, R = Xyl (6c)), [M2{μ-CN(Me)(R)}(μ- CO)(CO){N3C2(H)(CO2Me)}(Cp)2] (M = Fe, R = Me (7a); M = Ru, R = Xyl (7b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3C2(H)(CN)}(Cp)2] (8), respectively. The asymmetrically substituted triazolato complexes 7-8 are obtained as mixtures of N(1) and N(2) bonded isomers, whereas 6 exists only in the N(2) form. Methylation of 6-8 results in the formation of the triazole complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(CO2Me)2}(Cp)2][CF3SO3] (9), [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3(Me)C2(H)(CO2Me)}(Cp)2][CF3SO3] (M = Fe, R = Me (10a); M = Ru, R = Xyl (10b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(H)(CN)}(Cp)2][CF3SO3], 11. The crystal structures of trans-2b, 4b · CH2Cl2, 5a, 6b · 0.5CH2Cl2 and 8 · CH2Cl2 have been determined.  相似文献   

4.
Two new octahedral cluster complexes - [Re6S8(3,5-Me2PzH)6]Br2 · 2(3,5-Me2PzH) (1) and [Re6Se8(3,5-Me2PzH)6]Br2 · 2(3,5-Me2PzH) (2), where 3,5-Me2PzH is 3,5-dimethylpyrazole, have been synthesized using reaction of rhenium chalcobromide complexes Cs4[Re6S8Br6] · 2H2O and Cs3[Re6Se8Br6] · H2O, respectively, with molten 3,5-dimethylpyrazole. Both compounds synthesized were characterized by X-ray single-crystal diffraction and chemical analysis, IR and luminescent spectra.  相似文献   

5.
(Polypyrazolylborato)(benzonitrile) ruthenium(II) complexes [RuCl{BR(pz)3}(PhCN)2] (R = pz, H; pz = pyrazol-1-yl), prepared from trans-[RuCl2(PhCN)4] and K[BR(pz)3], were allowed to react with potassium 3,5-dimethyl-substituted polypyrazolylborate salt K[BH(3,5-Me2pz)3], and gave (pyrazolato)(pyrazole) species of [Ru{BR(pz)3}(3,5-Me2pz)(3,5-Me2pzH)2] {R = pz (1), H (2)}, respectively. Upon protonation with HBF4 (Et2O), the species 1 was converted to a fairly stable tris(pyrazole) derivative [Ru{B(pz)4}(3,5-Me2pzH)3]BF4 (3), which worked as a novel halogeno-anion receptor. Moreover, the complex [RuCl2(PhCN)4] was treated with K[BH(3,5-Me2-4-Brpz)3] in the presence of 3,5-dimethyl-4-bromopyrazole, 3,5-Me2-4-BrpzH, to afford [Ru{BH(3,5-Me2-4-Brpz)3}(3,5-Me2-4-Brpz)(3,5-Me2-4-BrpzH)2] and [Ru{BH(3,5-Me2-4-Brpz)3}(3,5-Me2-4-Brpz)(3,5-Me2-4-BrpzH)(PhCN)]. Single-crystal X-ray structural analyses were carried out for 1, 3 · CHCl3, [Ru{B(pz)4}(3,5-Me2pzH)2(OH2)]O3SC6H4CH3 · CH3OH, and [RuCl{B(pz)4}(3,5-Me2pzH)2] · CHCl3.  相似文献   

6.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

7.
A series of malonato complexes of molybdenum(V) was prepared by reacting (PyH)5[MoOCl4(H2O)]3Cl2 or (PyH)n[MoOBr4]n with malonic acid (H2mal) or a half-neutralized acid, hydrogen malonate (Hmal), at ambient conditions: (PyH)3[Mo2O4Cl42-Hmal)] · CH3CN (1), (PyH)3[Mo2O4Br42-Hmal)] · CH3CN (2), (PyH)2[Mo2O4Cl(η2-mal)(μ2-Hmal)Py] (3), (3,5-LutH)2(H3O) [Mo2O42-mal)22-Hmal)] (4), (PyH)[Mo2O4Cl22-Memal)Py2] (5), (3,5-LutH)[Mo2O4Cl22-Memal)(3,5-Lut)2] (6), (PyH)[Mo2O4Cl22-Etmal)Py2] (7), (3,5-LutH)[Mo2O4Cl22-Prmal)(3,5-Lut)2] (8) and [{Mo2O42-Memal)Py2}22-OCH3)2] (9) (where Py = pyridine, C5H5N; PyH+ = pyridinium cation, C5H5NH+; 3,5-Lut = 3,5-lutidine, C7H9N; 3,5-LutH+ = 3,5-lutidinium cation, C7H9NH+; mal2− = malonate, OOCCH2COO; Memal = monomethyl malonate, OOCCH2COOCH3; Etmal = monoethyl malonate, OOCCH2COOC2H5 and Prmal = monopropyl malonate, OOCCH2COOC3H7). The complex anions of compounds 1-8 have a common structural feature: a dinuclear, singly metal-metal bonded {Mo2O4}2+ core with the carboxylate moiety of the malonato ligand coordinated in a syn-syn bidentate bridging manner to the pair of metal atoms. The remaining four coordination sites of the {Mo2O4}2+ core are occupied with halides in 1 and 2, with halides/pyridine ligands in 5-8, with a pair of bidentate malonate ions in 4 and with the combination of all in 3. The neutral molecules of 9 consist of two {Mo2O4}2+ cores linked with a pair of methoxide ions into a chain-like, tetranuclear cluster. An esterification of malonic acid was observed to take place in the reaction mixtures containing alcohols. Solvothermal reactions with malonic acid carried out at 115 °C produced anionic acetato complexes as found in (PyH)[Mo2O4Cl22-OOCCH3)Py2] · Py (10), (PyH)[Mo2O4Cl22-OOCCH3)Py2] (11), (3,5-LutH)[Mo2O4Cl22-OOCCH3)(3,5-Lut)2] (12) and (4-MePyH)3[Mo2O4Cl22-OOCCH3)(4-MePy)2]2Cl (13) (4-MePy = 4-methylpyridine, C6H7N). The acetate coordinated in the syn-syn bidentate bridging mode in all. Reactions of (PyH)5[MoOCl4(H2O)]3Cl2 with succinic acid (H2suc) at ambient conditions resulted in a complex with a half-neutralized acid, (PyH)[Mo2O4Cl22-Hsuc)Py2] · Py (14) (Hsuc = hydrogen succinate, OOC(CH2)2COOH), while those carried out at 115 °C in a tetranuclear succinato complex, (4-MePyH)2[{Mo2O4Cl2(4-MePy)2}24-suc)] (15) (suc2− = succinate, OOC(CH2)2COO). The tetranuclear anion of 15 consists of two {Mo2O4}2+ cores covalently linked with a tetradentate succinato ligand. The compounds were fully characterized by infrared vibrational spectroscopy, elemental analyses and X-ray diffraction studies.  相似文献   

8.
The dihydroxo-bridged dinuclear copper(II) compound [Cu2(dpyam)2(μ-OH)2]I2 (1) and the triply bridged dinuclear copper(II) compounds with a formato bridge [Cu2(dpyam)2(μ-O2CH)(μ-OH)(μ-OMe)](ClO4) (2) and [Cu2(dpyam)2(μ-O2CH)(μ-OH)(μ-Cl)](ClO4) · 0.5H2O (3) (in which dpyam=di-2-pyridylamine) have been synthesized and their crystal structures determined by X-ray crystallographic methods. All three compounds are either centrosymmetric, or have a symmetry plane in the molecule. Compound 1 contains the [Cu2(dpyam)2(μ-OH)2]+ unit and iodide anions. Each copper(II) ion is in a slightly tetrahedrally distorted square planar coordination with the square plane consisting of two nitrogen atoms of the dpyam ligand and two bridging hydroxo groups. The Cu-I distances of 3.321 Å are quite long and only involve a weak semi-coordination. Compound 2 contains a triply bridged dinuclear copper(II) species, the coordination environment around each copper(II) ion involves a distorted trigonal-bipyramidal CuN2O3 chromophore. In the dinuclear unit of compound 3, the triply bridged copper(II) ions show a distorted trigonal-bipyramidal coordination of the CuN2O2Cl chromophore. The Cu-Cu distances are 2.933(2), 3.023(1) and 3.036(1) Å for compounds 1, 2 and 3, respectively.The magnetic susceptibility measurements, measured from 5 to 280 K, revealed a weak antiferromagnetic interaction between the Cu(II) atoms for compound 1 with a singlet-triplet energy gap (J) of −15.3 cm−1, whereas compounds 2 and 3 are ferromagnetic with J=62.5 and 79.1 cm−1, respectively.  相似文献   

9.
Three new triply-bridged dinuclear copper(II) compounds with carboxylato bridges, [Cu2(μ-O2CH)(μ-OH)(μ-Cl)(dpyam)2](PF6) (1), [Cu2(μ-O2CH)2(μ-OH)(dpyam)2](PF6) (2) and [Cu2(μ-O2CCH2CH3)2(μ-OH)(dpyam)2](ClO4) (3) (dpyam = di-2-pyridylamine) have been synthesized and characterized crystallographically and spectroscopically. Compound 1 consists of a dinuclear unit in which both copper(II) ions are bridged by three different ligands, i.e., formate, chloride and hydroxide anions, providing a distorted trigonal bipyramidal geometry with a CuN2O2Cl chromophore. Compounds 2 and 3 have two bridging formato ligands and two bridging propionato ligands, respectively, together with a hydroxo bridge. The carboxylato ligands in both compounds 2 and 3 exhibit different coordination modes. One is in a syn, syn η112 bridging mode and the other is in a monoatomic bridging mode. The structure of compound 2 involves a dinuclear unit, with a distorted trigonal bipyramidal geometry around each Cu(II) ion with a CuN2O3 chromophore. Compound 3 contains a non-centrosymmetric unit; the coordination environment around Cu(1) is a distorted square-pyramidal geometry and an intermediate geometry of sp and tbp around the Cu(II) ion. The Cu?Cu separations are 3.061, 3.113 and 3.006 Å for compounds 1, 2 and 3, respectively. The EPR spectra of all three compounds show a broad isotropic signal with a g value around 2.10.The magnetic susceptibility measurements, measured from 5 to 280 K, revealed a moderate ferromagnetic interaction between the Cu(II) ions with a singlet-triplet energy gap (J) of 79.7, 47.8 and 24.1 cm−1, for compounds 1, 2 and 3, respectively. Also a very weak intermolecular antiferromagnetic interaction was observed between the dinuclear units.  相似文献   

10.
In aqueous solution, the reaction of Cu(ClO4)2 and di(2-pyridylmethyl)amine, DPA with the disodium salt of pyrazole-3,5-dicarboxylate (Na2Hpzdc) in presence of sodium azide afforded the azido complex [Cu3(DPA)3(μ-pzdc)(μ-N3)](ClO4)2·2H2O (1) whereas when reaction was conducted in absence of sodium azide the perchlorato complex [Cu3(DPA)3(μ-pzdc)(μ-ClO4)](ClO4)2·3H2O (2) was obtained. The complexes were structurally characterized by physicochemical techniques and by single crystal X-ray crystallography in case of 1. The coordination sphere of the two complexes which are iso-structural polymeric 1D systems consist of three independent Cu(DPA) units, one pzdc bridging ligand and one end-on bridging azido group in 1 or one bridging perchlorato group in 2. The three Cu(II) centers in both complexes may be described as axially elongated octahedral. Magnetic susceptibility measurements reveal the weak anti-ferromagnetic coupling in the two complexes (= −23.2 cm−1 for 1 and −14.8 cm−1 for 2).  相似文献   

11.
The new trans-hyponitrite derivative complex [Ru2(CO)4(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)] (2, dppm = Ph2PCH2PPh2) was prepared by deprotonation of [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)][BF4] (1) with the base DBU (1.8-diazabicyclo[5.4.0]undec-7-ene). The latter complex salt has been obtained in an improved synthesis starting from the trans-hyponitrite complex [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNO)]. Compound 2 has been characterized by spectroscopic methods as well as by X-ray diffraction and represents the first neutral complex bearing a deprotonated monoester of the hyponitrous acid as the bridging ligand.  相似文献   

12.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

13.
The reaction of [Rh2(acam)4(H2O)2]ClO4 (1) (Hacam = acetamide) with K2PtCl4 in aqueous solution gave crystals of [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PtCl2}] · 2H2O (2). The reaction of 1 with K2PdCl4 produced the palladium analog [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PdCl2}] · 2H2O (3) and a small amount of an aquated palladium complex [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}] · H2O (4). Complexes 2 and 3 have anionic chains of [Rh2(acam)4{(μ-Cl)2MCl2}] (M = Pt, Pd), while 4 includes neutral chains of [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}]. Although all of the structures include infinite chains of (-Rh-Rh-Cl-M-Cl-)n (M = Pt, Pd), the chain structures are different; zigzag for 2 and 3 and helical for 4. In the structures of 2 and 3, the counter cation [Rh2(acam)4(H2O)2]+ made a hydrogen-bonded chain with the crystallization water molecules. The cationic chains and the anionic chains are connected with hydrogen bonds. In the structure of 4, the chains are also linked together by direct hydrogen bonds between the chains and those with the crystallization water molecules. ESR spectra of the powdered samples of 2 and 3 at 77 K were consistent with a rhombic structure: for 2, g1 = 2.111, g2 = 2.054, g3 = 2.004; for 3, g1 = 2.115, g2 = 2.057, g3 = 2.007. These results indicate that there is a spin flip-flop exchange between the cations, [Rh2(acam)4(H2O)2]+, and the units in the anionic chains. The electrical conductivities of 2 and 3 were in the order of 10−7 S cm−1 at room temperature.  相似文献   

14.
A series of dinuclear copper(II) complexes involving 6-(benzylamino)purine derivatives, (HLn), as bridging ligands were synthesized, characterized and tested for both their in vitro and in vivo antioxidant activities. Based on results of elemental analyses, temperature dependence of magnetic susceptibility measurements, UV-vis, FTIR, EPR, NMR and MALDI-TOF mass spectroscopy, conductivity measurements and thermal analyses, the complexes with general compositions of [Cu2(μ-HLn)4Cl2]Cl2 · 2H2O (1-4) and [Cu2(μ-HLn)2(μ-Cl)2Cl2] (5-7) were prepared {where n = 1-4; HL1 = 6-[(2-methoxybenzyl)amino]purine, HL2 = 6-[(4-methoxybenzyl)amino]purine, HL3 = 6-[(2,3-dimethoxybenzyl)amino]purine and HL4 = 6-[(3,4-dimethoxybenzyl)amino]purine}. In the case of complexes 2, 3, 5 and 7, the antioxidant activities were studied by both in vitro {superoxide dismutase-mimic (SOD-mimic) activity} and in vivo {cytoprotective effect against the alloxan-induced diabetes (antidiabetic activity)} methods. The obtained IC50 value of the SOD-mimic activity for the complex 5 (IC50 = 0.253 μM) was shown to be even better than that of the native bovine Cu,Zn-SOD enzyme (IC50 = 0.480 μM), used as a standard. As for the antidiabetic activity, the pretreatment of mice with complexes 3 and 7 led to the complete elimination of cytotoxic attack of alloxan and its free radical metabolites, used as a diabetogenic agent. The cytoprotective effect of these compounds was proved by the preservation of the initial blood glucose levels of the pretreated animals, as against the untreated control group.  相似文献   

15.
The aromatic thioether (2,6-bis((2-(dimethylamino)ethylamino)methyl)phenyl)(tert-butyl)sulfane (6) reacts with [Pd(NCCH3)2Cl2] under S-C bond cleavage to give the dinuclear palladium(II) complex [L3Pd2(μ-Cl)]2+ (7), where (L3) = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-thiophenolate. Complex 7 reacts readily with sodium acetate and sodium acetamide by the displacement of the bridging chloride group forming [L3Pd2(μ-OAc)]2+ (8) and [L3Pd2(μ-ONHCCH3)]2+ (9), respectively. Complex 8 can also be prepared by the reaction of 6 with [Pd(OAc)2]. All complexes were isolated as perchlorate salts and fully characterized by ESI-MS, IR, 1H, and 13C NMR spectroscopy. The structures of 7[ClO4] and 9[ClO4]2 have been determined by X-ray crystallography. The latter structure reveals a μ1,3-bridging acetamidate unit showing that (L3) can alter its conformation sufficiently to accommodate a multi-atom bridging species between the two Pd atoms.  相似文献   

16.
Herein, we report the syntheses, spectral and structural characterization, and magnetic behavior of four new dinuclear terephthalato-bridged copper(II) complexes with formulae [Cu2(trpn)2(μ-tp)](ClO4)2 · 2H2O (1), [Cu2(aepn)2(μ-tp)(ClO4)2] (2), [Cu2(Medpt)2(μ-tp)(H2O)2](ClO4)2 (3) and [Cu2(Et2dien)2(μ-tp)(H2O)](ClO4)2 (4) where tp = terephthalate dianion, trpn = tris(3-aminopropyl)-amin, aepn = N-(2-aminoethyl)-1,3-propanediamine, Medpt = 3,3′-diamino-N-methyldipropylmine and Et2dien = N,N-diethyldiethylenetriamine. The structures of these complexes consist of two μ-tp bridging Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry of the Cu(II) ions in these compounds may be described as close to square-based pyramid (SP) with severe significant distortion towards trigonal bipyramid (TBP) stereochemistry in 1. The visible spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, the solid infrared spectral data for the stretching frequencies of the tp-carboxalato groups, the ν(COO) reveals the existence of bis(monodentate) coordination mode for the bridged terephthalate ligand. The susceptibility measurements at variable temperature over the range 2-300 K are reported. Despite the same bonding mode of the tp bridging ligand, there has been observed slight antiferromagnetic coupling for the compounds 1 and 4 with J values of −0.5 and −2.9 cm3 K mol−1, respectively, and very weak ferromagnetic coupling for 2 and 3 with J values of 0.8 and 10.1 cm3 K mol−1, respectively. The magnetic results are discussed in relation to other related μ-terephthalato dinuclear Cu(II) published compounds.  相似文献   

17.
Reaction of bis(2-{pyrid-2-yl}ethyl)amine with 2-bromoethanol in the presence of Na2CO3 yields the title ligand, LH. Treatment of LH with the CuBr2 or Zn(O2CMe)2 · 2H2O yields pure crystalline [CuBr(LH)]Br · H2O (1 · H2O) and [Zn2(O2CMe)2(μ-O2CMe)(μ-L)] (2). Reaction of LH with Cu(O2CMe)2 · H2O affords a low yield of [Cu2Cl2(μ-O2CMe)(μ-L)] (3), the Cl ligands apparently originating from the CH2Cl2 crystallization solvent. Compound 1 · H2O is a near-regular square-pyramidal complex with a neutral, protonated LH ligand. In contrast, 2 and 3 are both unusual unsymmetric dinuclear complexes, with a five-coordinate [ML(O2CMe)] (M = Zn or Cu) unit linked to a second metal ion through the deprotonated ligand alkoxide donor and O,O′-bridging acetate ligand.  相似文献   

18.
Three doubly-bridged, trinuclear copper(II) compounds with hydroxo and carboxylato bridges, 1[Cu3(L1)2(μ-OH)2(μ-propionato)2](1), [Cu3(L2)2(μ-OH)2(μ-propionato)2(DMF)2] (2) and 1{[Cu3(L3)2(μ-OH)2(μ-propionato)2]} [Cu3(L3)2(μ-OH)2(μ-propionato)2(DMF)2]} (3) [HL1 = N-(pyrid-2-ylmethyl)benzenesulfonylamide, HL2 = N-(pyrid-2-ylmethyl)toluenesulfonylamide, HL3 = N-(pyrid-2-ylmethyl)naphthalenesulfonylamide], have been synthesized and characterized. 1 is built from [Cu3(L1)2(μ-OH)2(μ-propionato)2] clusters. Each unit contains three copper(II) with two different coordination environments: the terminal centers are square-base pyramidal whereas the central copper is square planar. 2 presents a similar square-base pyramidal geometry in the terminal centers, but the central copper is six-coordinate. 3 shows an unusual 1D coordination polymer comprised of two distinct building blocks: one similar to that found in 1 and the other similar to that found in 2. The magnetic susceptibility measurements (2-300 K) reveal a ferromagnetic interaction between the Cu(II) ions with J values of 76.0, 55.0, and 48.0 cm−1 for 1, 2, and 3, respectively. Emission spectroscopy, thermal denaturation, viscosimetry and cyclic voltammetry show an interaction of the complexes with DNA through the sugar-phosphate backbone. All three Cu(II) complexes were found to be very efficient agents of plasmid DNA cleavage in the presence of ascorbato or mercaptopropionic acid. Both the kinetics and the mechanism of the cleavage reaction have also been examined.  相似文献   

19.
[M(P3C2tBu2)(CO)3I] (M = Mo, 1, W, 2) have been synthesised and reacted with PCl5 for oxidation study purposes. Compounds Ti(P3C2tBu2)(Ind)Cl2], 3, and [Zr(P3C2tBu2)(Cp)Cl2], 4, were detected spectroscopically, but showed to be too unstable to be isolated. A Ti(IV) complex, [Ti(P3C2tBu2)Cl3], 5, has been formed from the reaction of [TiCl4] with the base-free ligand K(P3C2tBu2), while the Ti(III) species, [Ti(P3C2tBu2) Cl2(THF)], 6, was prepared from [TiCl3(THF)3]. Compounds 5 and 6 were studied as ethylene catalyst precursors after activation with MAO. In the studied conditions, complex 5 is the most active one with an activity of 2.2 × 105 g(molTi [E] h)−1, one order of magnitude higher than compound 6. The produced polymer is linear polyethylene.  相似文献   

20.
Assembly of isonicotinic acid ligand (HL) with metal halide, five new hybrid complexes [CdI2(C5H4NCOOH)(C5H4NHCOO)] · H2O (1), Nan[ZnCl2(C5H4NCOO)]n · 2nH2O (2), [CdX(C5H4NCOO)]n (X = Br (3), I (4)) and [Cd3Cl2(OH)2(C5H4NCOO)2]n (5) were obtained, which display a variety of structural motifs, ranging from zero-dimensional to complicated three-dimensional networks. Complex 1 possesses an isolated unit MX2 that is further connected into 3D networks through hydrogen bonding and π-π stacking interactions. Complex 2 is characterized by an infinite one-dimensional chain of zinc atoms bridged by L ligands. While complexes 3 and 4 possess X-bridging 1[CdX2/2] inorganic chains connected by L ligands to form a 2D hybrid network structure. In the case of 5, the cadmium(II) cation is bridged by μ3-Cl atom and μ3-OH group to form a 2-D 2[Cd6/2Cl6/33-OH)2] inorganic layer which is further extended into 3-D framework by bridging L ligand via Cd-N and Cd-O bonds. The optical properties of 1, 4, and 5 in the solid state are investigated at room temperature and time-dependent DFT (TDDFT) calculation using the B3LYP functional has been performed on 1. The result indicated that the emission band of 1 is attributed to an admixture of MLCT (metal-to-ligand charge-transfer) and LLCT (ligand-to-ligand charge-transfer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号