首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of water soluble compounds of general formula [{(η6-arene)Ru(HMP)Cl}], [η6-arene = η6-cymene (1), η6-HMB (2), η6-C6H6 (3); HMP = 5-hydroxy-2-(hydroxymethyl)-4-pyrone] have been prepared by the reaction of [{(η6-arene) RuCl2}2] with HMP. The complexes 1 and 2 react with NaN3 to give in excellent yield tetra-azido complexes [{(η6-arene)Ru(μN3)N3}2] (arene = cymene 4, HMB = 5) but similar reaction of complex 3 with NaN3 yielded di-azdo complex [{(η6-C6H6)Ru(μN3)Cl}2] (6). Reaction of [{(η6-arene)Ru(μN3)Cl}2] with HMP in the presence of NaOMe resulted in the formation of azido complex [{(η6-arene)Ru(HMP)N3}]. Mono and dinuclear complexes [{(η6-arene)Ru(HMP)(L1)}]+ and [{(η6-arene)Ru(HMP)}2(μL2)]2+ were also prepared by the reaction of complexes 1 and 2 with the appropriate ligand, L1 or L2 in the presence of AgBF4 (L1 = PyCN, DMAP; L2 = 4,4′-bipy, pyrazine). The complexes are characterized on the basis of spectroscopic data and molecular structures of three representative compounds have been determined by single crystal X-ray diffraction study.  相似文献   

2.
The reaction of the cyclometalated IrIII dimer [{(ppy)2Ir}2(μ-Cl)2] (ppyH = 2-phenylpyridine) with silver triflate followed by a multidentate ligand [1,4-bis[3-(2-pyridyl)pyrazolylmethyl]benzene (bppb), 1,3,5-tri[3-(2-pyridyl)pyrazolylmethyl]-2,4,6-trimethylbenzene (tppb), 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), 2-chloro-4,6-bis(dipyridin-2-ylamino)-1,3,5-triazine (cddt) or 2,4,6-tris(dipyridin-2-ylamino)-1,3,5-triazine (tdat)] afforded di- or trinuclear compounds: [{Ir(ppy)2}2(μ-bppb)](OTf)2 (1), [{Ir(ppy)2}3(μ-tppb)](OTf)3 (2), [{Ir(ppy)2}2(μ-tptz-OH)](OTf) (3), [{Ir(ppy)2}2(μ-cddt)](OTf)2 (4) and [{Ir(ppy)2}2(μ-tdat)](OTf)2 (5). All of these compounds contain cationic metal cores with corresponding triflate counter anions. The molecular structures of 1-4 reveal that the structural feature of the Ir(ppy)2 center of the starting precursor is conserved in the products. Also, because of the nature of the ligands, there is virtually no electronic communication between the IrIII centers except in 3 where a ring hydroxylation at the triazine carbon atom is effected upon metalation. Compounds 1-5 are robust in solution where they retain their structural integrity. The UV-Vis and emission spectra of 1-5 compounds are very similar to each other with the exception of 3 which seems to possess a different electronic structure. All the compounds are luminescent at room temperature. The emission bands indicate significant contribution from 3LC. Increase in the number of ‘Ir(ppy)2’ units does not have any effect on emission color.  相似文献   

3.
The dimerization of 6,6-dimethylfulvene with Ni(cod)2 yields the 4,4,8,8-tetramethyl-3a,4,7a,8-tetrahydro-s-indacene isomer (1a). Heating a solution of 1a converts it to the 1,4,5,8 (1b) and 1,4,7,8 (1c) tetrahydro-s-indacene isomers. The activation energy for the isomerization is 23(1) kcal/mol. 1b and 1c can be deprotonated with n-BuLi and the reaction of the dianion with [ClIr(C2H4)2]2 gives two isomers, cis-[(η5-C5H3)(CMe2)Ir(C2H4)2]2 (cis-2) and trans-[(η5-C5H3)(CMe2)Ir(C2H4)2]2 (trans-2). Reaction of 1b and 1c with RhCl3 · xH2O in refluxing methanol yields a red-orange solid, which was consistent with the empirical formula, [(C5H3)(CMe2)RhCl2]n (3). Reaction of 3 with C2H4 in a Na2CO3/ethanol mixture afforded cis-[(η5-C5H3)(CMe2)Rh(C2H4)2]2 in 5% yield.  相似文献   

4.
The acetamidinates {[MeNC(Me)NMe]2Ln}2[μ-η22-MeNC(Me)NMe]2 (Ln = Y (1), Dy (2)) and {[PrnNC(Me)NPrn]2Y}2[μ-η22-PrnNC(Me)NPrn]2 (3) have been prepared by the reactions of amides Ln[N(SiMe3)2]3 with respective N,N′-disubstituted amidines MeNC(Me)NHMe or PrnNC(Me)NHPrn. The reaction of Er[N(SiMe3)2]3 with excess of monosubstituted amidine HNC(Me)NHPri or in a ratio of 1:2 resulted in the formation of compound {Er[NC(Me)NHPri]3}x (4). The same reaction with 1:1 ratio yielded heteroleptic complex {Er[N(SiMe3)2]2[NC(Me)NHPri]}x (5). The complexes 1, 2 and 3 have similar structures and contain four terminal and two μ-η22-N,N-bridging amidinate groups binding the metal atoms. Volatility of 1, 2 and 3 is comparable to that of known monomeric La[PriNC(R)NPri]3. Compound 1 efficiently catalyzes the ring-opening polymerization of rac-lactide to give polylactide with Mn 53 085 and polydispersity 1.84.  相似文献   

5.
Interaction of [Cp*RuCl(μ-Cl)]2 with 2,2′-bipyridine (2,2′-bipy) in the presence of Na[PF6] gave a chloride bridging dinuclear complex [{Cp*Ru(2,2′-bipy)}2(μ-Cl)][PF6] (1). In the crystal structure, the cation [{Cp*Ru(2,2′-bipy)}2(μ-Cl)]+ contains a bent Ru-Cl-Ru linkage with an angle of 141.87(12)°. The tris(μ-hydroxo)diruthenium complex [{(η6-p-cymene)Ru}2(μ-OH)3][BF4] in acetone solution was treated by 4,4′-bipyridine (4,4′-bipy) to give a hydroxo-bridged tetranuclear complex [{(η6-p-cymene)Ru}2(μ-OH)2(μ-4,4′-bipy)]2[BF4]4 (2). Complex 2 consists of four (η6-p-cymene)Ru moieties connected by two 4,4′-bipy and four hydroxo-bridging groups, forming a novel metallomacrocycle with alternating hydroxyl and 4,4′-bipy bridges between the ruthenium atoms. Spectroscopic properties along with electrochemistry of two organoruthenium (II) complexes 1 and 2 are reported.  相似文献   

6.
The crystal structures of mononuclear (azido)(pentamethylcyclopentadienyl)iridium(III) complexes bearing 2- or 8-quinolinethiolate (n-Sqn), [CpIr(N3)(n-Sqn)] {n = 2 (1) or 8 (2); Cp = η5-C5Me5} have been determined by X-ray analysis. The 2-Sqn complex, 1, acquires severe steric strains in the four-membered κ2N,S chelate ring, while the 8-Sqn isomer, 2, forms a strain-free five-membered planar κ2N,S chelate ring. It has also been revealed that the corresponding benzimidazole-2-thiolate (Hbimt) complex, which was obtained similarly to the above n-Sqn complexes from [CpIr(N3)2]2 and Na(Hbimt), takes an unsymmetrical dinuclear structure bridged by two Hbimt ligands with different bonding modes, [CpIr(N3){μ(S:N1)-Hbimt}{μ(S:S)-Hbimt}Ir(N3)Cp] · MeOH (3).  相似文献   

7.
Phosphorus-carbon bond is formed via: (i) the apparent HCCH insertion into Ir-P bond to produce Ir-CHCH-PPh3 group and (ii) the activation of the ring-methyl group of the coordinated Cp* (C5Me5 −) to produce Ir(η5-C5Me4CH2-PPh3) group from reactions of iridium(III)-Cp* complexes, [Cp*IrL3]n+ (n=1, 2); Cp*=C5Me5 −; L3=Cl(PPh3)2 (3), (CH3CN)3 (5). The following new P-C bond containing iridium(III) complexes have been prepared: [Cp*Ir(-CHCH-PPh3)Cl(PPh3)]+ (4) from 3 with HCCH; [Ir(η5-C5Me4CH2-PPh3)(H)(PPh3)2]2+ (6) from 5 with PPh3; [Cp*Ir(-CHCH-PPh3)2(PPh3)]2+ (7) from 5 with HCCH and PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)Cl(PPh3)]2+ (8) from [Ir(η5-C5Me4CH2-PPh3)(Cl)(PPh3)2]2+ (6-Cl) with HCCH; [Ir(η5-C5Me3(1,3-CH2-PPh3)2(H)(PPh3)2)]3+ (10) from [Ir(η5-C5Me4CH2-PPh3)(NCCH3)2(PPh3)]3+ (9) with PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)2(PPh3)]3+ (11) from 9 with HCCH and PPh3.  相似文献   

8.
Addition of phenyldi(2-thienyl)phosphine (PPhTh2) to [Re2(CO)10−n(NCMe)n] (n = 1, 2) affords the substitution products [Re2(CO)10−n(PhPTh2)n] (1, 2) together with small amounts of fac-[ClRe(CO)3(PPhTh2)2] (3) (n = 2). Reaction of [Re2(CO)10] with PPhTh2 in refluxing xylene affords a mixture which includes 2, [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-H)] (4), [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-η11(S)-C4H3S)] (5) and mer-[HRe(CO)3(PPhTh2)2] (6). Phosphido-bridged 4 and 5 are formed by the carbon-phosphorus bond cleavage of the coordinated PPhTh2 ligand, the cleaved thienyl group being retained in the latter. Reaction of [Mn2(CO)10] with PPhTh2 in refluxing toluene affords [Mn2(CO)9(PPhTh2)] (7) and the carbon-phosphorus bond cleavage products [Mn2(CO)6(μ-PPhTh)(μ-η15-C4H3S)] (8) and [Mn2(CO)5(PPhTh2)(μ-PPhTh)(μ-η15-C4H3S)] (9). Both 8 and 9 contain a bridging thienyl ligand which is bonded to one manganese atom in a η5-fashion.  相似文献   

9.
The DNA binding and in vitro cytotoxicity of the dinuclear Ir(III) polypyridyl complexes [{(η5-C5Me5)Ir(dppz)}2(μ-pyz)](CF3SO3)41 and [{(η5-C5Me5)Ir(pp)}2(μ-4,4′-bpy)](CF3SO3)42-4 (pp = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[2,3-a:2′,3′-c]phenazine (dppz), benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine (dppn)) with the rigid bridging ligands pyrazine (pyz) or 4,4′-bipyridine (4,4′-bpy) have been studied. Stable intercalative binding into CT DNA (calf thymus DNA) is indicated for the dppz complexes 1 and 3 by induced negative CD bands at about 300 nm and large viscosity increases, with the individual measurements being in accordance with intrastrand bis-intercalation for 3 and mono-intercalation for 1. The observed interruption of specific interresidue NOE cross peaks from the relevant nucleobase H6/H8 protons to the sugar H2′/H2″ protons of the preceding nucleotide is in accordance with bis-intercalation of complex 3 between the C3G18 and G4C17 base pairs and the T5A16 and A6T15 base pairs of the decanucleotide d(5′-CGCGTAGGCC-3′). Complexes 1 and 3 exhibit a greatly improved uptake by HT-29 (colon carcinoma) cells and significantly improved in vitro IC50 values of 1.8 ± 0.1 and 3.8 ± 0.1 μM towards this cell line in comparison to the mononuclear complex [(η5-C5Me5)IrCl(dppz)](CF3SO3) (IC50 = 7.4 ± 0.9 μM).  相似文献   

10.
Two novel phosphino-phosphaferrocenes [η5-C5H4(CH2)nPPh2]Fe(η5-PC4H2-2,5-Cy2) (PP1: n=1; PP2: n=2) have been designed and prepared in order to clarify weak chelate effect in the previously reported (η5-C5H4CH2PPh2)Fe[η5-PC4H2-2,5-((-)-menthyl)2] (1). 31P NMR studies of reactions of PP1 with PdCl2(cod) (6) revealed that PP1 showed stronger tendency to coordinate to the PdII center in bidentate fashion compared to 1. On the other hand, chelate effect in PP2 was negligibly weak and a reaction of PP2 with 6 in a PP2/6 = 2/1 molar ratio gave a complex PdCl2(PP2)2 (10) cleanly in which PP2 coordinated to the palladium center at the PPh2 moiety as a monodentate ligand. X-ray crystal structure studies of chelate complexes PdCl2(PP1) (7) and PdCl2(PP2) (9) showed that 9 had deviations from an idealized geometry in the square planar complex which could be attributed to a larger chelate ring of PP2, while PP1 in 7 constructed nearly ideal geometry for the square planar complex.From comparison of the coordination behavior between 1, PP1, and PP2, it is concluded that steric bulk of (-)-menthyl groups in 1 is the main factor of the weak chelate coordination of 1.  相似文献   

11.
Six novel Cd(II) coordination polymers based on 4,4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl (btmb), namely, [Cd(btmb)2I2]n (1), [Cd(btmb)I2]n (2), {[Cd(btmb)2(NO3)2]·H2O}n (3), {[Cd(btmb)2(SCN)2]·3H2O}n (4), {[Cd(btmb)(CH3COO)2(H2O)]·CH3CN}n (5) and [Cd(btmb)Cl2(H2O)]n (6) have been synthesized by the reactions of btmb with Cd(II) salts in the presence of different anions (I, , NCS, CH3COO or Cl) under appropriate reaction conditions. The assemblies of btmb with CdI2 afford two different structures: two-dimensional (2D) rhombohedral grid layer network structure 1 and 2D layer structure 2 involved with one-dimensional (1D) linear cadmium chains. Treatment of btmb with Cd(NO3)2·4H2O gives rise to a 2D grid network structure 3 which is similar to 1. When the I or NO3 anions were replaced by NCS, CH3COO or Cl, different 1D coordination polymers 4-6 were obtained, respectively. Polymer 4 displays a 1D double-chain structure, while both polymers 5 and 6 show 1D zigzag chain structures. In addition, the luminescence measurements reveal that polymers 1-6 exhibit different fluorescent emissions in the solid-state at room temperature, which can be attributed to the various coordination environments of Cd(II), solvent molecules and different packing interactions in these polymers.  相似文献   

12.
Three new lanthanide-organic frameworks {[La(IP-py)(HIP-py)(H2O)2]·H2O}n (1), {[Sm2(IP-py)2(IP-pyH)2(H2O)2]·12H2O}n (2) and {[Tb3(IP-py)4(IP-pyH)(H2O)5]·9H2O}n (3) have been prepared by reactions of the corresponding lanthanide salt with 5-(isonicotinamido)isophthalic acid (H2IP-py). The complexes have been fully characterized by means of IR, elemental analyses and single-crystal X-ray diffraction. In compounds 1-3, the lanthanide centers are eight- and nine-coordinated with different coordination geometries and the carboxylate groups of the ligand show different coordination modes leading to the formation of different 2D network structures which are well-defined by the bulky and inert functional groups. Interestingly an unprecedented 2D network of water molecules was observed in complex 2. The luminescent properties of complexes 2 and 3 were investigated.  相似文献   

13.
In situ reaction of the aminobenzoic acids 2-aminobenzoic acid and 3,5-diaminobenzoic acid with salicylaldehyde provide easy access to the ligands 2-[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L1) and 3,5-bis[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L2). Addition of a Fe(II) or Cu(II) salt to the solution of the ligand yields the corresponding Fe and Cu complexes. The species synthesized have been structurally characterized by single-crystal X-ray diffraction. The Fe(II) complex [Fe(L1)(MeOH)3] (1) crystallizes in the triclinic space group . The Cu(II) complex [Cu(L1)] (2) is a one-dimensional chain and crystallizes in the monoclinic space group P21. The Cu(II) complex [Et3NH]2[Cu2(L2)2] (3) crystallizes in the monoclinic space group P21/n. The magnetic properties of 1, 2 and 3 have been studied, showing that the Cu(II) ions of 2 and 3 are ferromagnetically coupled. Complexes 1 and 3 have strong potential as metal-bearing building blocks for the synthesis of metal-organic frameworks.  相似文献   

14.
Hexa-coordinated chelate complex cis-[Ru(CO)2I2(P∩S)] (1a) {P∩S = η2-(P,S)-coordinated} and penta-coordinated non-chelate complexes cis-[Ru(CO)2I2(P∼S)] (1b-d) {P∼S = η1-(P)-coordinated} are produced by the reaction of polymeric [Ru(CO)2I2]n with equimolar quantity of the ligands Ph2P(CH2)nP(S)Ph2 {n = 1(a), 2(b), 3(c), 4(d)} in dichloromethane at room temperature. The bidentate nature of the ligand a in the complex 1a leads to the formation of five-membered chelate ring which confers extra stability to the complex. On the other hand, 1:2 (Ru:L) molar ratio reaction affords the hexa-coordinated non-chelate complexes cis,cis,trans-[Ru(CO)2I2(P∼S)2] (2a-d) irrespective of the ligands. All the complexes show two equally intense terminal ν(CO) bands in the range 2028-2103 cm−1. The ν(PS) band of complex 1a occurs 23 cm−1 lower region compared to the corresponding free ligand suggesting chelation via metal-sulfur bond formation. X-ray crystallography reveals that the Ru(II) atom occupies the center of a slightly distorted octahedral geometry. The complexes have also been characterized by elemental analysis, 1H, 13C and 31P NMR spectroscopy.  相似文献   

15.
Reactions of [(p-cymene)RuCl2]2 (1a) with dpmp ((Ph2PCH2)2PPh) in the absence or presence of KPF6 afforded the ionic complexes [{(p-cymene)RuCl2}(dpmp-P1,P3;P2){RuCl(p-cymene)}](X) (2a1: X=Cl; 2a2: X=PF6). A (p-cymene)RuCl moiety constructs a 6-membered ring coordinated by two terminal P atoms of the dpmp ligand and another one binds to a central P atom of the ligand. Reactions of [(C6Me6)RuCl2]2 (1b) with an excess of dpmp in the presence of KPF6 gave a 4-membered complex [(C6Me6)RuCl(dpmp-P1,P2)](PF6) (3b), chelated by a terminal and a central P atom and another terminal atom is free. Use of Ag(OTf) instead of KPF6 gave [{(C6Me6)RuCl2(dpmp)Ag} 2](OTf)2 (5b) that the Ag atoms were coordinated by a terminal and a central P atom of each dpmp ligand. Reaction with an equivalent of dpmp in the presence of KPF6 gave [{(C6Me6)RuCl}(dpmp-P1,P2;P3){(C6Me6)RuCl2}](PF6) 4b. Complex has a structure that the (C6Me6)RuCl2 moiety coordinated to the free P atom of 3b. Complex 3b was treated with MCl2(cod) (M=Pd, Pt), [Pd(MesNC)4](PF6)2 (MesNC=2,4,6-Me3C6H2NC) or [Pt2(XylNC)6](PF6)2 (XylNC=2,6-Me2C6H3NC), generating [{(C6Me6)RuCl(dpmp)}2MCl2](PF6)2 (8b: M=Pd; 9b: M=Pt), [{(C6Me6)RuCl(dpmp)}2{Pt(MesNC)2}](PF6)4 (10b) and [{(C6Me6)RuCl(dpmp)}2{Pt2(XylNC)4}](PF6)4 (11b), respectively. Complex 3b reacted readily with [Cp*MCl2]2 (M=Rh, Ir) or AuCl(SC4H8), affording the corresponding hetero-binuclear complexes [{(C6Me6)RuCl}(dpmp-P1,P2;P3)(MCl2Cp*](PF6) (6b: M=Rh; 7b: M=Ir) and [{(C6Me6)RuCl}(dpmp-P1,P2;P3)(AuCl)](PF6) (12b). These complexes have two chiral centers. Some complexes were separated as two diastereomers by successive recrystallization. The structures of 3b, 5b, 6b, 8b and 12b were confirmed by X-ray analyses.  相似文献   

16.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

17.
Treatment of 3-(4-carboxyphenylhydrazono)pentane-2,4-dione (HL) with transition metal ions afforded four novel complexes, [Zn(L)(μ2-OOCCH3)(H2O)]n (1), [Zn(L)2(MeOH)4] (2), {[Cd4(η2-L)4(μ2-η2-L)4(H2O)4(MeOH)2]·MeOH} (3) and [Cd(η2-L)(μ2-η2-OOCCH3)(H2O)2]n (4). Their crystal structures have been characterized by single-crystal X-ray crystallography. In polymer 1, the acetate anions bridge the Zn(II) ions forming an infinite one-dimensional (1-D) chain with L units acting as monodentate ligands in the side chain. In mononuclear complex 2, two L ligands act as monodentate fashion to coordinate to the Zn(II) ion. In its solid-state structure, [Zn(L)2(MeOH)4] groups are joined together by hydrogen bonds forming a three-dimensional (3-D) supramolecular network. In tetranuclear complex 3, four Cd(II) ions are linked by four μ2-η2-L ligands, and chelated by another four L ligands, respectively. In polymer 4, the acetate anions bridge the Cd(II) ions leading to a 1-D chain containing chelating L units in the side chain.  相似文献   

18.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

19.
The reaction of [Ru(CO)2Cl2]n with bis(2-pyridylmethyl)amine (bpma) in refluxing ethanol followed by anion exchange yields two products: cis,fac-[Ru(bpma)(CO)2Cl]PF6 (1a, 71%) and trans,fac-[Ru(bpma)(CO)2Cl]PF6 (1b, 29%). Reaction of 1a with AgBF4 in acetone, followed by acetonitrile and then anion exchange gave cis,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2a). In the same way, 1b afforded trans,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2b). Reaction of depolymerized [Ru(CO)2Cl2]n with bpma in ethanol at room temperature afforded cis,cis-[Ru(η2-bpma)(CO)2Cl2] (3). In refluxing ethanol, 3 was converted to cis,fac-[Ru(bpma)(CO)2Cl]Cl (1a-Cl). Heating 3 in chlorobenzene afforded 1b-Cl, exclusively; heating 3 in ethylene glycol gave mainly 1a-Cl. Heating 1a-Cl in ethanol resulted in no isomerization, but heating in chlorobenzene gave a mixture of 3 and 1b-Cl. Anion exchange for PF6 with 1a-Cl and 1b-Cl afforded 1a and 1b, respectively, whereas anion exchange for BPh4 afforded 1a-BPh4. Compounds 1a, 1b, 2a and 3 have been structurally characterized.  相似文献   

20.
Photolysis of the molybdaborane [(η5-C5H5)(η51-C5H4)-arachno-2-MoB4H7] (1) in benzene-d6 gives ca. 60% conversion to the compound [(η5-C5H5)(η51-C5H4)-nido-2-MoB4H5] (2). Compound 2 could not be isolated as a solid and is thermally unstable at 20 °C in solution with a half-life of 3-4 h. Repeated photolysis and thermolysis of 1 in the presence of BH3 · thf gives a low yield of the known metallacarbaborane [(η5-C5H5)(η23-C3H3)-closo-1-MoC2B9H9] (3) suggesting that 3 is formed from 1 via 2. Reaction of 1 with PEt3 gives initially [(η5-C5H5)(η51-C5H4)-arachno-2-MoHB4H4PEt3] (4). Longer reaction times (>10 min, 20 °C) give in addition [(η5-C5H5)(η51-C5H4)-arachno-1-MoHB3H3PEt3] (5). Both 4 and 5 are unstable in solution or the solid state decomposing to the molybdacarbaborane [(η5-C5H5)(η32- C3H3)-nido-1-MoC2B3H5] (6), [Mo(η-C5H5)2H2] and BH3 · PEt3. Compound 1 is deprotonated cleanly by KH in thf at the Mo-H-B bridging proton to give (7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号