首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro and in situ experiments were conducted to evaluate the hypothesis that the nonclassical opioid peptide nociceptin acting on sympathetic preganglionic neurons (SPNs) inhibits spinal sympathetic outflow. First, whole cell patch recordings were made from antidromically identified SPNs from immature (12-16 day old) rat spinal cord slices. Nociceptin (0.1, 0.3, and 1 microM) concentration dependently suppressed the excitatory postsynaptic potentials (EPSPs) evoked by focal stimulation and hyperpolarized a population of SPNs; these effects were naloxone insensitive. L-Glutamate-induced depolarizations were not significantly changed by nociceptin. Results from this series of experiments indicate that nociceptin inhibits the activity of SPNs by either a presynaptic or postsynaptic site of action, whereby the peptide reduces, respectively, the amplitude of EPSPs or the excitability of SPNs. Second, intrathecal injection of nociceptin (3, 10, and 30 nmol) to urethan-anesthetized rats dose dependently reduced the mean arterial pressure and heart rate; these effects were not prevented by prior intravenous administration of naloxone (1 mg/kg). Physiological saline given intrathecally was without appreciable effects. These results, together with earlier observations of the detection of nociceptin-immunoreactive nerve fibers and nociceptin receptor immunoreactivity in the rat intermediolateral cell column, raise the possibility that the opioid peptide, which may be released endogenously, reduces spinal sympathetic outflow by depressing the activity of SPNs.  相似文献   

2.
M Jia  P G Nelson 《Peptides》1987,8(3):559-563
mu, delta and kappa opioid receptor agonists, morphiceptin, Leu-enkephalin and dynorphin reduced monosynaptic EPSPs evoked in spinal cord neurons by stimulation of spinal cord neurons in a mouse cell culture system. The incidence of the cell pairs which responded to morphiceptin, Leu-enkephalin and dynorphin was 3%, 63% and 37% respectively. Statistical analysis showed the effect of Leu-enkephalin was presynaptic. When tested with Leu-enkephalin and dynorphin, 6 cell pairs responded to both Leu-enkephalin and dynorphin, 5 cell pairs only responded to Leu-enkephalin, none of the cell pairs responded only to dynorphin (n = 18). It is suggested that some cells have only delta receptors, but kappa receptors coexist with delta receptors. Opiate receptors of the mu type are rare on SC neurons.  相似文献   

3.
A brief high-frequency stimulation of the anal nerve of the isolated nerve ring of snail Helix induced a pronounced increase in the amplitude of EPSPs, evoked in identified neurons of left parietal and visceral ganglions by low frequency (once in 5 min) stimulation of the same nerve. The amplitude of EPSP returned to the control level 30-120 min after tetanization. We called this effect long-term potentiation. A brief application of serotonin (10 microM) in the majority of neurons also induced lasting either 15-30 min or more than 2 hours facilitation of EPSP, evoked by anal nerve stimulation. Intracellular cAMP injections, being without effect on EPSP amplitude in many neurons, in certain neurons caused an increase in EPSP amplitude, lasting up to 30 min. It is suggested that the 3 factors shown to increase synaptic efficiency in molluscan neurons may have common mechanisms of action.  相似文献   

4.
Neurons in the rostral medullary raphe/parapyramidal region regulate cutaneous sympathetic nerve discharge. Using focal electrical stimulation at different dorsoventral raphe/parapyramidal sites in anesthetized rabbits, we have now demonstrated that increases in ear pinna cutaneous sympathetic nerve discharge can be elicited only from sites within 1 mm of the ventral surface of the medulla. By comparing the latency to sympathetic discharge following stimulation at the ventral raphe site with the corresponding latency following stimulation of the spinal cord [third thoracic (T3) dorsolateral funiculus] we determined that the axonal conduction velocity of raphe-spinal neurons exciting ear pinna sympathetic vasomotor nerves is 0.8 +/- 0.1 m/s (n = 6, range 0.6-1.1 m/s). Applications of the 5-hydroxytryptamine (HT)(2A) antagonist trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate (SR-46349B, 80 microg/kg in 0.8 ml) to the cerebrospinal fluid above thoracic spinal cord (T1-T7), but not the lumbar spinal cord (L2-L4), reduced raphe-evoked increases in ear pinna sympathetic vasomotor discharge from 43 +/- 9 to 16 +/- 6% (P < 0.01, n = 8). Subsequent application of the excitatory amino acid (EAA) antagonist kynurenic acid (25 micromol in 0.5 ml) substantially reduced the remaining evoked discharge (22 +/- 8 to 6 +/- 6%, P < 0.05, n = 5). Our conduction velocity data demonstrate that only slowly conducting raphe-spinal axons, in the unmyelinated range, contribute to sympathetic cutaneous vasomotor discharge evoked by electrical stimulation of the medullary raphe/parapyramidal region. Our pharmacological data provide evidence that raphe-spinal neurons using 5-HT as a neurotransmitter contribute to excitation of sympathetic preganglionic neurons regulating cutaneous vasomotor discharge. Raphe-spinal neurons using an EAA, perhaps glutamate, make a substantial contribution to the ear sympathetic nerve discharge evoked by raphe stimulation.  相似文献   

5.
Electrical stimulation (50-150 microA, 0.5-ms duration, 3-300 Hz) was performed within three different regions (lateral, ventrolateral, and ventral) of the C2-C3 spinal cord of decerebrate, vagotomized, paralyzed, and artificially ventilated cats. Spinal cord stimulation sites were located by inserting monopolar or bipolar stimulating electrodes either at the dorsolateral sulcus or at least 1 mm medial or lateral to the sulcus. With stimulation at each site, alterations in respiratory rhythm, orthodromic phrenic nerve responses, and antidromic activation of medullary respiratory-modulated neurons were examined. Phrenic nerve responses to cervical spinal cord stimulation consisted of an early excitation (2-4 ms) and/or a late excitation (4-8 ms). Stimulation of the lateral region evoked the greatest amplitude early response and stimulation of the ventrolateral region produced the greatest late excitation. All three stimulus sites elicited antidromic activation of some respiratory-modulated neurons in the dorsal (DRG) and ventral respiratory groups (VRG). The lateral region was the least effective resetting site, and it had the highest incidence of antidromic activation of both DRG and VRG neurons. The ventrolateral region of the cervical spinal cord was the most effective resetting site, but it had the lowest incidence of antidromic activation of DRG respiratory-modulated neurons. In addition, resetting responses were observed with spinal cord stimulation at similar sites in the thoracic and lumbar spinal cord regions thought to be devoid of inspiratory bulbospinal axons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of GABA, bicuculline and 5-HT on primary afferents in the isolated spinal cord of the frog Rana ridibunda were studied. Bath application of GABA (1 mM) reduced the primary afferent depolarisation (PAD) in IX segment of the spinal cord evoked by X dorsal root stimulation (57 +/- 8% of initial level, n = 5, p < 0.05). The action potentials (AP) recorded in dorsal root afferents was also suppressed under the GABA action (74 +/- 9%, p < 0.05). Bath application of bicuculline (50 microM) reduced the PAD (21 +/- 7%), n = 6, p < 0.05), meanwhile the AP in dorsal root afferents was resistant against the bicuculline action. Bath application of 5-HT (25 microM) depressed the PAD (34 +/- 7%, n = 7, p < 0.05) and the amplitude of the AP recorded from the single afferent fibre in dorsal column (76 +/- 6%, n = 7, p < 0.05). In contrast to GABA, 5-HT more effectively suppressed the late phase of the PAD evoked by X dorsal root stimulation and caused (76 +/- 6%, n = 7, p < 0.05) an alteration of the AP shape. All effects induced by these drugs were reversible. The mechanisms of GABA and 5-HT modulation of spinal cord afferent income are discussed.  相似文献   

7.
The present study was performed to explore the effect of calcitonin gene-related peptide 8-37 (CGRP8-37) on the electrical stimulation-evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. The discharge frequencies of WDR neurons were evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. CGRP8-37 was applied directly on the dorsal surface of the L3 to L5 spinal cord. After the administration of 3 nmol of CGRP8-37, the evoked discharge frequency of WDR neurons decreased significantly, an effect lasting more than 30 min. The results indicate that CGRP receptors play an important role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord.  相似文献   

8.
The present study was performed to explore the effect of calcitonin gene-related peptide (CGRP) and its antagonist CGRP8-37 on the evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. Recording was performed with a multibarrelled glass micropipette and the chemicals were delivered by iontophoresis. The discharge of WDR neurons was evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. (1) Iontophoretic application of CGRP at an ejection current of 100 nA increased the discharge frequency of WDR neurons significantly. (2) Iontophoretic application of CGRP8-37 at an ejection current of 80 or 160 nA induced significant decreases in the discharge frequency of WDR neurons, but not at 40 nA. (3) Iontophoretic application of CGRP8-37 not only antagonized the CGRP-induced increase in the evoked discharge frequency of WDR neurons but also induced a significant decrease in the evoked discharge frequency of WDR neurons compared to basal levels. The results indicate that CGRP and its receptors play a facilitary role on the transmission and/or modulation of nociceptive information in the dorsal horn of the spinal cord in rats.  相似文献   

9.
Neutral carrier-containing Ca2+-selective microelectrodes were used to record the cytoplasmic free Ca2+ concentration [( Ca2+]i) in spinal cells in cats and in hippocampal cells of rats (in situ). The mean [Ca2+]i in motoneurons was close to 1 microM. Antidromic or direct stimulation for 30 s at 10 Hz increased [Ca2+]i by a mean of 90 nM. Such a small increase in [Ca2+]i and its slow decay (with a mean half-time of 23 (SD +/- 14.5) s) indicate very effective intracellular sequestration of Ca2+. Orthodromic stimulation consistently evoked smaller increases in [Ca2+]i. A much larger rise of interneuronal [Ca2+]i was evoked by stimulation of dorsal roots: by contrast intra-axonal recording (in motor or sensory fibres) failed to reveal any increase in [Ca2+]i in response to stimulation at 100 Hz. In the hippocampus, presumably because of poorer recording conditions, resting values of [Ca2+]i were higher (mean 8.5 microM). Repetitive stimulation of the fimbria--commissure at 5-20 Hz for 30 Hz, had variable effects on [Ca2+]i. Very large increases (to greater than 200 microM) were elicited repeatedly in some cells, either near the end of the tetanic stimulation or after a 20-30 s delay. Such major increases, which were associated with population cell discharges in bursts, may be related to long-term changes in hippocampal neuronal properties that are evoked by tetanic stimulation. Both in the spinal cord and the hippocampus, probable intraglial recordings showed relatively high mean levels of [Ca2+]i (about 30 microM).  相似文献   

10.
Hori N  Carp JS  Carpenter DO  Akaike N 《Life sciences》2002,72(4-5):389-396
Cervical spinal cord slices were prepared from adult rats. Intracellular recordings from motoneurons revealed that electrical stimulation of the ventralmost part of the dorsal funiculus (which contains primarily descending corticospinal axons) elicited EPSPs in 75% of the neurons. The latencies of these EPSPs tended to be shorter than those elicited by dorsal horn gray matter stimulation. Pairs of subthreshold dorsal funiculus stimuli were able to elicit action potentials in motoneurons. These data are consistent with previous morphological and electrophysiological studies indicating that cervical motoneurons receive both mono-and polysynaptic corticospinal inputs. In addition, motoneurons were markedly depolarized by iontophoretic application of AMPA or KA (7 out of 7 neurons), but only weakly depolarized by NMDA (1 out of 6 neurons). CNQX (but not AP-5) blocked EPSPs elicited by dorsal funiculus stimulation. Thus, corticospinal transmission to motoneurons is mediated primarily by non-NMDA glutamate receptors.  相似文献   

11.
Effects of met-enkephalin (opioid peptide) and naloxone (opioid antagonist) on nociceptive sensitization were studied in L-RP11 Helix neurons. In control snails sensitizing stimulation produced reversible membrane depolarization and depression of neural responses evoked by sensory stimuli during the short-term stage of sensitization and facilitation of these responses at the long-term stage. Met-enkephalin (10 but not 0.1 microM) suppressed the neural responses evoked by nociceptive stimuli. Sensitizing stimulation during metenkephalin application prevented the facilitation of neural responses evoked by tactile stimulation of snail head, whereas facilitation of neural responses evoked by chemical stimulation of head or tactile stimulation of foot were similar to that in control sensitized snails. Sensitizing stimulation during met-enkephalin and/or naloxone application prevented the facilitation of neural responses evoked by chemical stimulation of snail head, whereas responses evoked by tactile stimulation of snail head or foot were facilitated (as in neurons of control sensitized snails). Opioids are suggested to be involved in regulation of nociceptive mechanisms and selective induction of long-term plasticity in L-RP11 neural inputs activated by tactile of chemical stimulation of snail head.  相似文献   

12.
In decerebrate paralyzed cats, we examined the effects of two central motor commands (fictive locomotion and scratching) on the discharge of dorsal horn neurons receiving input from group III and IV tibial nerve afferents. We recorded the impulse activity of 74 dorsal horn neurons, each of which received group III input from the tibial nerve. Electrical stimulation of the mesencephalic locomotor region (MLR), which evoked fictive static contraction or fictive locomotion, inhibited the discharge of 44 of the 64 dorsal horn neurons tested. The mean depth from the dorsal surface of the spinal cord of the 44 neurons whose discharge was inhibited by MLR stimulation was 1.77 +/- 0.04 mm. Fictive scratching, evoked by topical application of bicuculline to the cervical spinal cord and irritation of the ear, inhibited the discharge of 22 of the 29 dorsal horn neurons tested. Fourteen of the twenty-two neurons whose discharge was inhibited by fictive scratching were found to be inhibited by MLR stimulation as well. The mean depth from the dorsal surface of the cord of the 22 neurons whose discharge was inhibited by fictive scratching was 1.77 +/- 0.06 mm. Stimulation of the MLR or the elicitation of fictive scratching had no effect on the activity of 22 dorsal horn neurons receiving input from group III and IV tibial nerve afferents. The mean depth from the dorsal surface of the cord was 1.17 +/- 0.07 mm, a value that was significantly (P < 0.05) less than that for the neurons whose discharge was inhibited by either MLR stimulation or fictive scratching. We conclude that centrally evoked motor commands can inhibit the discharge of dorsal horn neurons receiving thin fiber input from the periphery.  相似文献   

13.
离体运动神经元对腹外侧索刺激的突触反应特征   总被引:6,自引:0,他引:6  
汪萌芽  沈锷 《生理学报》1997,49(6):625-631
应用新片大鼠脊髓薄片运动神经元细胞内记录技术,对电刺激腹外侧索诱发的突触反应进行了电生理特性分析。结果在28个测试的MN中,22人有兴奋性突触后电位反应,其中2个跟随在抑制性突触反应这后,6个还对单或串刺激产生慢EPSP反应;VLF-EPSP的潜伏期频数分布呈峰坡性偏态;同-MN的VLF-EPSP与腹根EPSP间有典型的空间总和。  相似文献   

14.
Effects induced in motoneurons and interneurons of the cervical enlargements of the cat spinal cord by stimulation of the lateral and ventral funiculi at the lower thoracic level were studied under conditions producing degeneration of fibers of descending brain systems. Stimulation of this sort evoked PSPs (mainly of mixed character) in 57 of 90 motoneurons tested. In nine motoneurons the primary response consisted of monosynaptic EPSPs evoked by activity of fibers of the lateral funiculus, and in the rest it consisted of polysyanptic (at least disynaptic) EPSPs and IPSPs. Polysynaptic effects arising in the neuron in response to stimulation of the lateral and ventral funiculi usually differed only quantitatively. The intensity of excitatory synaptic action on motoneurons of the proximal muscle (especially thoracid) was much greater than that on motoneurons of distal muscles. Nearly all motoneurons with no synaptic action belonged to the latter group. Stimulation of the lateral and ventral funculi facilitated synaptic action induced in motoneurons by stimulation of high-threshold segmental afferents and led to excitation of interneurons located in the vectral quadrant, and had no effect on interneurons in the dorsal regions of gray matter. These effects are regarded mainly as the result of excitation of long ascending propriospinal pathways in the cervical parts of the cord; it is also postulated that some of them are evoked by the arrival of activity along collaterals of descending propiospinal pathways to the neurons in this region.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 339–347, July–August, 1979.  相似文献   

15.
The effect of intraventricular beta-endorphin-(1-27) on the spinal release of Met-enkephalin induced by intraventricular beta-endorphin was studied using the intrathecal superfusion technique in urethane anesthetized rats. Intraventricular injection of beta-endorphin at a dose of 15 micrograms released Met-enkephalin from the spinal cord. This release of Met-enkephalin induced by beta-endorphin was significantly reduced by beta-endorphin-(1-27), 60 micrograms, injected intraventricularly. Injection of beta-endorphin (1-27) itself did not cause any release of Met-enkephalin. The finding is in line with the previous report that beta-endorphin (1-27) inhibited the analgesia induced by beta-endorphin.  相似文献   

16.
This study examined whether mucosal stimulation activates long secretomotor neural reflexes and, if so, how they are organized. The submucosa of in vitro full thickness guinea pig ileal preparations was exposed in the distal portion and intracellular recordings were obtained from electrophysiologically identified secretomotor neurons. Axons in the intact mucosa of the oral segment were stimulated by a large bipolar stimulating electrode. In control preparations, a single stimulus pulse evoked a fast excitatory postsynaptic potential (EPSP) in 86% of neurons located 0.7-1.0 cm anal to the stimulus site. A stimulus train evoked multiple fast EPSPs, but slow EPSPs were not observed. To examine whether mucosal stimulation specifically activated mucosal sensory nerve terminals, the mucosa/submucosa was severed from the underlying layers and repositioned. In these preparations, fast EPSPs could not be elicited in 89% of cells. Superfusion with phorbol dibutyrate enhanced excitability of sensory neurons and pressure-pulse application of serotonin to the mucosa increased the fast EPSPs evoked by mucosal stimulation, providing further evidence that sensory neurons were involved. To determine whether these reflexes projected through the myenteric plexus, this plexus was surgically lesioned between the stimulus site and the impaled neuron. No fast EPSPs were recorded in these preparations following mucosal stimulation whereas lesioning the submucosal plexus had no effect. These results demonstrate that mucosal stimulation triggers a long myenteric pathway that activates submucosal secretomotor neurons. This pathway projects in parallel with motor and vasodilator reflexes, and this common pathway may enable coordination of intestinal secretion, blood flow, and motility.  相似文献   

17.
R Y Pun 《Peptides》1982,3(3):249-257
The postsynaptic action of the classical neurotransmitter noradrenaline (NA), the reversal potential of the excitatory postsynaptic potential (EPSP) and the effects of divalent cations on EPSPs in dissociated spinal cord cultures are described. In co-cultures of locus coeruleus explant and spinal cord cells, it was found that NA could mimic the response evoked by stimulation of the explant on the spinal cord cells surrounding the explants. Both depolarization and hyperpolarization responses were observed. On a few occasions, a biphasic response consisting of a hyperpolarization followed by a depolarization was observed. The depolarizing response was associated with an increase in input resistance of the membrane. This would suggest that NA may have a facilitatory effect on synaptic transmission. The depolarizations were antagonized by the α-antagonist piperoxane, and were not affected by the β-antagonist propranolol at the concentrations tested, indicating that the receptor mediating these responses is of the α-type. The reversal potential for dorsal root ganglion and spinal cord cells was +8±3.2 mV (mean±s.e.m.), and that for spinal cord and spinal cord cells was ?4±4.3 mV (mean±s.e.m.). These values are different from those previously reported for glutamate in spinal cord cultures. The effects of high and low concentrations of calcium ions on quantal output and mean quantal amplitude or quantal size of the EPSP were further examined. As expected, the cation had an effect mainly on the release process: increasing the concentration of calcium increased the amount of neurotransmitter released, while reducing the concentration of calcium reduced release. Quantal size was slightly or not affected by alteration of external calcium. In comparing the postsynaptic actions of classical neurotransmitters to those of peptides, there is apparently no evidence that the actions of the two groups of agents on central neurons are different. It appears, however, that the peptides generally elicit responses at lower concentrations than the classical neurotransmitters. Further experimentation is required to fully elucidate the actions of peptides on mammalian central neurons.  相似文献   

18.
We have previously reported that administration of beta-endorphin intraventricularly in the rat increases the release of immunoreactive Met-enkephalin from the spinal cord. To further eliminate the possibility that the increase in Met-enkephalin might arise from the degradation of beta-endorphin injected, the effect of peptidase inhibitors, aprotinin and bacitracin, on the spinal fluid content of Met-enkephalin released by intraventricular beta-endorphin was studied using an intrathecal perfusion technique in urethane anesthetized rats. Inhibition of peptidases by intraventricular aprotinin and bacitracin did not decrease nor enhance the increased content of Met-enkephalin in the spinal perfusate produced by intraventricular beta-endorphin. The result indicates that the Met-enkephalin arises from neuronal release in the spinal cord rather than from degradation of the beta-endorphin injected intraventricularly.  相似文献   

19.
We used an optical imaging technique to investigate whether axons of neurons in the caudal end of the ventrolateral medulla (CeVLM), as well as axons of neurons in the rostral ventrolateral medulla (RVLM), project to neurons in the intermediolateral cell column (IML) of the spinal cord. Brain stem-spinal cord preparations from neonatal normotensive Wistar-Kyoto and spontaneously hypertensive rats were stained with a voltage-sensitive dye, and responses to electrical stimulation of the IML at the Th2 level were detected as changes in fluorescence intensity with an optical imaging apparatus (MiCAM-01). The results were as follows: 1) depolarizing responses to IML stimulation during low-Ca high-Mg superfusion were detected on the ventral surface of the medulla at the level of the CeVLM, as well as at the level of the RVLM, 2) depolarizing responses were also detected on cross sections at the level of the CeVLM, and they had a latency of 24.0 +/- 5.5 (SD) ms, 3) antidromic action potentials in response to IML stimulation were demonstrated in the CeVLM neurons where optical images were detected, and 4) glutamate application to the CeVLM increased the frequency of excitatory postsynaptic potentials (EPSPs) and induced depolarization of the IML neurons. The optical imaging findings suggested a novel axonal and functional projection from neurons in the CeVLM to the IML. The increase in EPSPs of the IML neurons in response to glutamate application suggests that the CeVLM participates in the regulation of sympathetic nerve activity and blood pressure and may correspond to the caudal pressor area.  相似文献   

20.
Primary spinal cord trauma can trigger a cascade of secondary processes leading to delayed and amplified injury to spinal cord neurons. Release of fatty acids, in particular arachidonic acid, from cell membranes is believed to contribute significantly to these events. Mechanisms of fatty acid-induced injury to spinal cord neurons may include lipid peroxidation. One of the major biologically active products of arachidonic acid peroxidation is 4-hydroxynonenal (HNE). The levels of HNE-protein conjugates in cultured spinal cord neurons increased in a dose-dependent manner after a 24-h exposure to arachidonic acid. To study cellular effects of HNE, spinal cord neurons were treated with different doses of HNE, and cellular oxidative stress, intracellular calcium, and cell viability were determined. A 3-h exposure to 10 microM HNE caused approximately 80% increase in oxidative stress and 30% elevation of intracellular calcium. Exposure of spinal cord neurons to HNE caused a dramatic loss of cellular viability, indicated by a dose-dependent decrease in MTS [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-s ulfophenyl)- 2H-tetrazolium, inner salt] conversion. The cytotoxic effect of HNE was diminished by pretreating neurons with ebselen or N-acetylcysteine. These data support the hypothesis that formation of HNE may be responsible, at least in part, for the cytotoxic effects of membrane-released arachidonic acid to spinal cord neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号