首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effect of naloxone on analgesia induced by food deprivation   总被引:1,自引:0,他引:1  
Naloxone (4 mg/kg) or saline was administered to animals under food deprived and non-deprived conditions prior to testing pain sensitivity in the tail flick test. Food deprived animals exhibited significantly elevated latencies in comparison to latencies observed under non-deprived conditions. This analgesia was diminished by treatment with the opiate receptor antagonist, naloxone. These findings suggest that analgesia induced by food deprivation is mediated in part by opiate receptor systems.  相似文献   

2.
The data presented herein suggest that an intact pineal gland is required for the expression of the increased nocturnal sensitivity to morphine observed in mice. We report that the day/night rhythm of morphine analgesia was not evident in pinealectomized mice. Further, mice treated with melatonin exhibited a dose-related analgesic response. The decrease in sensitivity to pain was not observed in animals in which melatonin administration was followed by the opiate antagonist, naloxone. These data suggest that information derived from environmental lighting regulates sensitivity to pain via the pineal gland hormone melatonin, which is released and acts upon other areas of the CNS.  相似文献   

3.
Stereospecific reversal of nitrous oxide analgesia by naloxone   总被引:2,自引:0,他引:2  
The opiate antagonist naloxone was found to block nitrous oxide analgesia in a stereospecific fashion. Using a modified hotplate test in mice, the (-)-enantiomer of naloxone (which has a KD of approximately 1 nM for opiate receptors) antagonized the analgesic actions of nitrous oxide in a dose-dependent (2.5-20 mg/kg) fashion. In contrast, the (+)-enantiomer (KD approximately 10,000 nM) had no effect on nitrous oxide analgesia at the highest dose tested (40 mg/kg). These data strongly suggest that nitrous oxide analgesia is mediated via opiate receptors and is consistent with the hypotheses that this effect occurs either through the release of endogenous opioids or by physical perturbation of the opiate receptors.  相似文献   

4.
E A Field  C M Kuhn 《Life sciences》1989,44(26):2025-2032
In female neonatal rats, opiate receptor blockade markedly raises serum luteinizing hormone (LH) levels. The LH effect of acute treatment with opiate antagonists is apparently brief in older rats; however, age-related differences in antagonist pharmacokinetics may result in different LH response patterns. The duration of LH response to naloxone (NAL) and naltrexone (NTX) was examined in 5 day-old (d.o.) female rats and compared to the duration of analgesia blockade. The rise in serum LH following opiate receptor blockade in 5 d.o. rats was of similar duration to that previously observed in older animals and much briefer than blockade of analgesia. Furthermore, neonatal rats exhibited a delayed suppression of LH 6 hr following NAL, but not NTX, treatment. Stimulation and later suppression of LH were still observed after five repetitive NAL treatments at 6 hr intervals.  相似文献   

5.
The relationship between the pharmacological properties of an opioid antagonist, naltrexone (NTX), and tumor response was studied in mice with transplanted neuroblastoma (NB). Animals receiving 0.1 mg/kg NTX every 6 hr, which blocked morphine-induced analgesia for 24 hr each day, had a 100% tumor incidence, no deviation in time before tumor appearance, and a 17% decrease from control values in total survival time. In contrast, once daily injections of either 0.1 mg/kg NTX or 0.4 mg/kg NTX (the equivalent of 0.1 mg/kg given 4 times daily), which blocked morphine-induced analgesia for less than 10 hr each day, resulted in a tumor incidence of 20% and 60%, respectively, delays in time prior to tumor appearance of 90% and 65%, respectively, and an increased total survival time of 10% and 24%, respectively, for tumor-bearing mice relative to control levels. Inoculation of NB in control animals resulted in 100% tumor appearance within 16 days and a mean survival time of 36 days. These results show that tumorigenic events are dictated by the duration of opiate receptor blockade rather than the dosage of opiate antagonist, and provide compelling evidence that endogenous opioid systems play a crucial role in neuro-oncogenic expression.  相似文献   

6.
The effects of intraventricular administration of lysine-vasopressin on pain sensitivity in the rat were determined in the tail-flick test. Vasopressin (16–100 μg) was found to induce potent and dose-dependent antinociceptive actions, lasting up to one hour. An additional experiment demonstrated that analgesia induced by vasopressin was not blocked by naloxone, suggesting that this analgesia is independent of opiate receptor systems. Vasopressin was also found to be equally effective in elevating tail-flick latency after systemic administration. These results, together with others, suggest a possible role of vasopressin systems in the regulation of pain sensitivity.  相似文献   

7.
Thyroid hormone regulation of beta-adrenergic receptor number.   总被引:27,自引:0,他引:27  
The effects of exogenous thyroid hormones (thyroxine and triiodothyronine) on beta-adrenergic receptors in the rat myocardium were investigated. The potent beta-adrenergic antagonist, (-)-[3H]dihydroalprenolol, was used to directly estimate the number and affinity of beta-adrenergic receptors in rat heart membranes from control and hyperthyroid rats. Cardiac membranes from hyperthyroid rats contained 196 +/- 7 fmol of (-)-[3H]dihydroalprenolol binding sites/mg of protein which was significantly (p less than 0.005) greater than the number of binding sites (89 +/- 5 fmol/mg of protein) present in control membranes. The equilibrium dissociation constant (KD) for the interaction of receptors with dihydroalprenolol was the same (2 to 15 nM) in membranes from control and hyperthyroid rats. Similarly, there was no significant difference between the control and hyperthyroid membranes in the affinity of the beta-adrenergic receptor binding sites for the beta-adrenergic agonist isoproterenol. The results of this study demonstrate that thyroid hormones can regulate the number of cardiac beta-adrenergic receptors. The increased numbers of receptors may be responsible, at least in part, for the enhanced catecholamine sensitivity of beta-adrenergic-coupled cardiac responses in the hyperthyroid state.  相似文献   

8.
Previous work in this laboratory has shown that adrenal medullary transplants into the spinal cord subarachnoid space can reduce pain sensitivity. This analgesia most likely results from the release of neuroactive substances, particularly catecholamines and opioid peptides, from the transplanted cells into the CSF of the spinal cord, since it can be attenuated or blocked by alpha-adrenergic or opiate antagonists. The purpose of the present study was to more directly measure the release of catecholamines from adrenal medullary transplants in the spinal cord CSF using a spinal superfusion technique. CSF samples from rats with 6-month-old transplants were assayed for catecholamines using HPLC with electro-chemical detection. Results indicated that norepinephrine levels were increased threefold, and epinephrine levels nearly 100-fold, in animals with adrenal medullary transplants compared with control transplanted animals. There was no apparent increase in dopamine levels. Furthermore, the increased levels of total catecholamines were correlated with decreased pain sensitivity. Results of this study indicate that adrenal medullary transplants can survive for long periods in the rat spinal CSF and continue to release high levels of catecholamines. Together, the release of catecholamines and opioid peptides from adrenal medullary transplants may provide the ideal combination for the reduction of pain.  相似文献   

9.
Bremazocine: a potent, long-acting opiate kappa-agonist   总被引:15,自引:0,他引:15  
The benzomorphan analogue bremazocine is a potent, centrally-acting analgesic with a long duration of action. In animal models it is free of physical and psychological dependence liability, produces no respiratory depression, and has a variety of other properties which justify its classification as a putative opiate kappa-receptor agonist.Binding studies with tritiated (?)-bremazocine on rat brain membrane preparations show that this molecule differs in its binding properties from previously investigated exogenous or endogenous opioids. Studies on isolated guinea-pig ileum and mouse vas deferens indicate a preference for opiate kappa-receptors.In mice (hot plate, tail flick) and rhesus monkeys (shock titration), bremazocine is a potent analgesic with a long duration of action. Here also, the actions of the antagonists naloxone and Mr 2266 suggest a preference for opiate kappa-receptors.Bremazocine differs from morphine in the non-production of mydriasis and the Straub tail phenomenon in mice, in its lack of effects on respiration in rats, in that it is not self-administered by rhesus monkeys, and in that programmed administration in the same species does not lead to a morphine-like withdrawal syndrome upon cessation of drug treatment or upon naloxone challenge. Prolonged treatment of animals with bremazocine leads to tolerance to its analgesic effects; morphine treatment of such tolerant animals causes analgesia. Conversely, treatment of morphine-tolerant animals with bremazocine does not cause analgesia; these findings suggest that morphine and bremazocine interact with different subpopulations of opiate receptors.  相似文献   

10.
The initial threshold of pain sensitivity and the degree of morphine analgesia (12, 12, 70 mg/kg, i. p.) were assessed during mechanical, thermal and electrical stimulation, respectively, in noninbred white male mice. Two tests were performed, the second a week after the first one. A slight positive correlation (r = +0.39) between the initial threshold of pain reaction and the analgetic effect of morphine was found only during electrical stimulation in the first test, and positive correlation between the first and the second test during electrical and mechanical stimulation (0.34 and 0.27, respectively) was determined. The degree of morphine analgesia in different animals during second testing could either increase or decrease. It is suggested that previous testing of morphine analgetic effect cannot predict the efficacy of analgesia during the second testing and that the initial threshold of pain sensitivity cannot serve as a reliable predictor of morphine analgesia level.  相似文献   

11.
Dextronaloxone, a recently synthesized stereoisomer, which was shown to possess much less opiate receptor affinity than levonaloxone, produces no reversal of electroacupuncture analgesia (EAA) in mice. Since levonaloxone completely reverses EAA, this proves that stereospecific opiate receptors are involved. It has been reported that there are two classes of opiate receptors: Type I and Type II. Type I opiate receptors may be responsible for opiate analgesia. Antagonists of Type I receptors, levonaloxone, naltrexone, cyclazocine and diprenorphine, all block electroacupuncture analgesia at low doses. All together, these results strongly support the hypothesis that electroacupuncture analgesia is mediated by opiate receptors. Possibly Type I receptors are the major component of this system.  相似文献   

12.
C Chavkin  A Goldstein 《Life sciences》1982,31(16-17):1687-1690
Spare opiate receptors in the guinea pig ileum have been detected by the use of the opiate receptor alkylating agent beta-chlornaltrexamine (CNA). Treatment of the guinea pig ileum longitudinal muscle in vitro with low concentrations (less than 10nM) of CNA resulted in an irreversible parallel shift to the right of the normorphine log concentration response curve. With increasing concentration of the reagent, the agonist EC50 becomes progressively greater. Finally a point is reached at which the maximal agonist effect decreases, so that parallelism is no longer seen. The maximal parallel shift provides a measure from which one can estimate the spare receptor fraction that is present in untreated tissue. In ilea from normal guinea pigs, roughly 80-90% of the opiate receptors for normorphine were found to be spare. Even after the largest parallel shifts that could be achieved, the naloxone Ke value for antagonism was unchanged, indicating that normorphine acts through spare mu receptors. Ilea from guinea pigs made tolerant by chronic morphine pellet implantation were found to be more sensitive to the effects of CNA treatment; there was a reduction in the number of spare receptors for normorphine. It is suggested that the opiate spare receptor fraction is physiologically modulated to control neuronal sensitivity to opioid effect.  相似文献   

13.
Pain sensitivity of food and/or water-deprived male mice was tested on a hotplate. The most pronounced analgesia ensued in animals given no food and water, and no food but water ad libitum, the least one in water-deprived mice. The magnitude of the rise in pain threshold depended on the duration of deprivation and was correlated with the increase in the blood plasma beta-endorphin level. In the hypothalamus beta-endorphin level increased after 72-h food deprivation only. The level of dynorphin remained unchanged. Naloxone (10 mg/kg) almost completely reversed food or water-deprivation induced analgesia.  相似文献   

14.
The detection and avoidance of parasitized conspecifics is proposed to have important consequences for the behavior of animals, especially as related to mate choice. A reduction in pain sensitivity (i.e. analgesia) is a major correlate of exposure to real or potential danger and threatening stimuli, facilitating the expression of various active (e.g. fleeing) and passive (e.g. immobilization) defense responses. The present study examined pain sensitivity (latency of a foot-lifting response to 50 ° C thermal surface) of female mice, Mus musculus, that were exposed to the urine and other odor secretions of male mice subclinically infected with the naturally occurring, enteric, sporozoan parasite, Eimeria vermiformis. A 30-min exposure to the odors of a parasitized male induced an analgesia in the female mice that was found to be mediated by the increased activity of endogenous opioid peptide systems. A brief 1-min exposure to the male odors induced a shorter duration and lower amplitude analgesia of a non-opioid (serotonergic) nature. Maximum analgesic responses were induced by the odors of pre-infective [5 days post-infection (PI)] and infective (day 10 PI) males, with significantly lower responses elicited by the odors of post-infective (day 17 PI) male mice. Exposure to the odors of unparasitized males had no significant effects on the pain sensitivity of female mice. These results indicate that female mice can distinguish between the odors of parasitized and non-parasitized male mice, and find the odors of parasitized males threatening and/or stressful. These odor-induced analgesic responses and their neurohormonal correlates may be part of an adaptive preparatory defense mechanism that facilitates the detection and avoidance of parasitized males by female mice and contributes to female mate choice.  相似文献   

15.
To assess the effect of hyperthyroidism on the adenosine receptor-adenylate cyclase system in adipocytes, membranes from hyperthyroid and control rats were prepared. Rats were rendered hyperthyroid by five days of injection with triiodothyronine (T3). Basal as well as isoproterenol-, sodium fluoride-, forskolin- and manganese (Mn++)-stimulated adenylate cyclase activities are attenuated 20-30% in adipocyte membranes from hyperthyroid animals. There is a greater inhibition of total adenylate cyclase activity in response to R-PIA, A1 selective inhibitory agonist, in membranes from hyperthyroid animals. However, on a percentage basis, R-PIA is equally effective at inhibiting adenylate cyclase activity in control and treated membranes. Using antagonist radioligands, [3H]XAC (A1 receptor) and [125I]CYP (beta-adrenergic receptor), no significant alteration in receptor number is observed in hyperthyroidism. In addition, no alteration in Gi protein-A1 receptor coupling is noted as exhibited by R-PIA competition curves. These findings suggest hyperthyroidism most likely results in a decrease of the catalytic moiety of adenylate cyclase either quantitatively or functionally.  相似文献   

16.
Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy.  相似文献   

17.
The existence of multiple affinity states for the opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells has been demonstrated by competition binding studies with tritiated diprenorphine and [D-Ala2, D-Leu5]enkephalin (DADLE). In the presence of 10 mM Mg2+, all receptors exist in a high affinity state with Kd = 1.88 +/- 0.16 nM. Addition of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) decreased the affinity of DADLE to Kd = 8.08 +/- 0.93 nM. However, in the presence of 100 mM Na+, which is required for opiate inhibition of adenylate cyclase activity, analysis of competition binding data revealed three sites: the first, consisting of 17.5% of total receptor population has a Kd = 0.38 +/- 0.18 nM; the second, 50.6% of the population, has a Kd = 6.8 +/- 2.2 nM; and the third, 31.9% of the population, has a Kd of 410 +/- 110 nM. Thus, in the presence of sodium, a high affinity complex between receptor (R), GTP binding component (Ni), and ligand (L) was formed which was different from that formed in the absence of sodium. These multiple affinity states of receptor in the hybrid cells are agonist-specific, and the percentage of total opiate receptor in high affinity state is relatively constant in various concentrations of Na+. Multiple affinity states of opiate receptor can be demonstrated further by Scatchard analysis of saturation binding studies with [3H]DADLE. In the presence of Mg2+, or Gpp(NH)p, analysis of [3H]DADLE binding demonstrates that opiate receptor can exist in a single affinity state, with apparent Kd values of [3H]DADLE in 10 mM Mg2+ = 1.75 +/- 0.28 nM and in 10 microM Gpp(NH)p = 0.85 +/- 0.12 nM. There is a reduction of Bmax value from 0.19 +/- 0.02 nM in the presence of Mg2+ to 0.14 +/- 0.03 nM in the presence of Gpp(NH)p. In the presence of 100 mM Na+, Scatchard analysis of saturation binding of [3H]DADLE reveals nonlinear plots; two-site analysis of the curves yields Kd = 0.43 +/- 0.09 and 7.9 +/- 3.2 nM. These Kd values are analogous to that obtained with competition binding studies. Again, this conversion of single site binding Scatchard plots to multiple sites binding plots in the presence of Na+ is restricted to 3H-agonist binding only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Chronic administration of caffeine to mice (1 mg/ml in drinking water X 14 d) led to a downward shift in the dose-response curve for the locomotor effects of caffeine. Caffeine was also less effective as an antagonist against (-)-(N6-phenylisopropyl)-adenosine (PIA)-induced analgesia in the tail flick assay in these animals. The dose-response curves of PIA for both analgesia and locomotor depression were shifted to the left in animals chronically administered caffeine. In mice chronically administered PIA (1 mg/kg/d X 14 d), the dose-response curves of PIA for both analgesia and locomotor depression were shifted to the right. The dose-response curve for the locomotor effects of caffeine was shifted to the left, and caffeine exhibited greater antagonist activity against the analgesic action of PIA in these animals. There was no change in the Kd or Bmax values of either 3H-PIA or 3H-diethylphenylxanthine (DPX, a potent adenosine receptor antagonist) in mice chronically administered PIA. The Bmax values for both 3H-PIA and 3H-DPX were significantly increased, while the Kd values were not changed in mice chronically administered caffeine. There was no detectable change in the brain levels of either PIA or caffeine in animals chronically treated with either drug. The results demonstrate that chronic administration of caffeine increases the sensitivity of mice to the actions of PIA and vice versa, providing supportive evidence for the interaction of these drugs at the same receptor, which is probably an adenosine receptor.  相似文献   

19.
Under conditions of the formalin test, we studied changes in the level of analgesia induced by the action of low-intensity microwaves on the antinociceptive acupuncture point (AP) E36 in mice of strains CBA/CaLac (CBA) and C57BL/6j (C57) and in albino mongrel mice. Measurements were performed under control conditions and with experimentally induced decrease in the serotonin level in the brain (by injections of DL-parachlorophenylalanine, p-CPA). In the latter cases, the duration of the pain behavioral reaction increased despite irradiation of the AP E36. In mongrel, CBA, and C57 mice, the intensity of pain manifestations was 114.4, 29.0, and 21.1% greater, respectively, than in mice of these groups with no injections of p-CPA. These facts show that the serotonergic brain system is profoundly involved in the formation of analgesia after irradiation of the AP by low-intensity microwaves, and this involvement significantly depends on the genotype of the animals. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 495–497, September–December, 2006.  相似文献   

20.
Central or systemic administration of agonists directed at the mu or delta opiate receptors generally produce a greater degree of analgesia in males than in females. To date, most studies examining sex-based differences in opioid analgesia have used acute noxious stimuli (i.e., tail-flick and hot plate test); thus the potential dimorphic response of centrally acting opiates in the alleviation of persistent inflammatory pain is not well established. In the present study, right hind paw withdrawal latency (PWL) to radiant thermal stimuli was measured in intact male and cycling female Sprague-Dawley rats before and after unilateral hind paw injection of the inflammatory agent complete Freund's adjuvant (CFA). Control animals received intraplantar injection of saline. Twenty four hours after CFA or saline injection, animals received either saline or morphine bisulfate (0.5-15 mg/kg sc). Separate groups of control or inflamed animals were tested on their responsiveness to morphine at 7, 14, and 21 days post-CFA or saline. No sex differences were noted for baseline PWLs, and females displayed slightly less thermal hyperalgesia at 24 h post-CFA. At all morphine doses administered, both the antihyperalgesic effects of morphine in the inflamed animals and the antinociceptive effects of morphine in control animals were significantly greater in males compared with females. Similarly, in males, the antihyperalgesic effects of morphine increased significantly at 7-21 days post-CFA; no significant shift in morphine potency was noted for females. These studies demonstrate sex-based differences in the effects of morphine on thermal hyperalgesia in a model of persistent inflammatory pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号