首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four-helical protein Im7 folds via a rapidly formed on-pathway intermediate (k(UI)=3000 s(-1) at pH 7.0, 10 degrees C) that contains three (helices I, II and IV) of the four native alpha-helices. The relatively slow (k(IN)=300 s(-1)) conversion of this intermediate into the native structure is driven by the folding and docking of the six residue helix III onto the developing hydrophobic core. Here, we describe the structural properties of four Im7* variants designed to trap the protein in the intermediate state by disrupting the stabilising interactions formed between helix III and the rest of the protein structure. In two of these variants (I54A and L53AI54A), hydrophobic residues within helix III have been mutated to alanine, whilst in the other two mutants the sequence encompassing the native helix III was replaced by a glycine linker, three (H3G3) or six (H3G6) residues in length. All four variants were shown to be monomeric, as judged by analytical ultracentrifugation, and highly helical as measured by far-UV CD. In addition, all the variants denature co-operatively and have a stability (DeltaG(UF)) and buried hydrophobic surface area (M(UF)) similar to those of the on-pathway kinetic intermediate. Structural characterisation of these variants using 1-anilino-8-napthalene sulphonic acid (ANS) binding, near-UV CD and 1D (1)H NMR demonstrate further that the trapped intermediate ensemble is highly structured with little exposed hydrophobic surface area. Interestingly, however, the structural properties of the variants I54A and L53AI54A differ in detail from those of H3G3 and H3G6. In particular, the single tryptophan residue, located near the end of helix IV, and distant from helix III, is in a distinct environment in the two sets of mutants as judged by fluorescence, near-UV CD and the sensitivity of tryptophan fluorescence to iodide quenching. Overall, the results confirm previous kinetic analysis that demonstrated the hierarchical folding of Im7 via an on-pathway intermediate, and show that this species is a highly helical ensemble with a well-formed hydrophobic core. By contrast with the native state, however, the intermediate ensemble is flexible enough to change in response to mutation, its structural properties being tailored by residues in the sequence encompassing the native helix III.  相似文献   

2.
The classical Linderstrøm-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (IUN). On the other hand, in an on-pathway three-state system (UIN), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments.  相似文献   

3.
Cobos ES  Radford SE 《Biochemistry》2006,45(7):2274-2282
Intermediates have now been identified in the folding of a number of small, single-domain proteins. Here we describe experiments to determine the effect of Na(2)SO(4) on the properties of the on-pathway intermediate formed early during the folding of the four-helical protein, Im7. This intermediate, studied previously in 0.4 M Na(2)SO(4), contains three of the four native helices and is fascinating in that several residues in helices I, II, and IV make non-native interactions that stabilize this state. Whether these contacts form as a consequence of the presence of Na(2)SO(4), however, remained unresolved. Using kinetic analysis of the effect of Na(2)SO(4) on the unfolding and refolding kinetics of Im7*, combined with detailed analysis of the resulting chevron plots, we show that decreasing the concentration of Na(2)SO(4) from 0.4 to 0 M destabilizes the intermediate and rate-limiting transition (TS2) states by 7 and 10 kJ mol(-)(1), respectively, and has little effect on the relative compactness of these states compared with that of the unfolded ensemble (beta(I) approximately 0.8, beta(TS2) approximately 0.9 in 0 to 0.4 M Na(2)SO(4)). Analysis of 10 variants of the protein in 0.2 M Na(2)SO(4) using Phi-values showed that the structural properties of the intermediate and TS2 are not altered significantly by the concentration of the kosmotrope. The data demonstrate that the rapid formation of a compact intermediate stabilized by non-native interactions during Im7* folding is not induced by high concentrations of the stabilizing salt, but is a generic feature of the folding of this protein.  相似文献   

4.
Previous work shows that the transiently populated, on-pathway intermediate in Im7 folding contains three of the four native alpha-helices docked around a core stabilised by native and non-native interactions. To determine the structure and dynamic properties of this species in more detail, we have used protein engineering to trap the intermediate at equilibrium and analysed the resulting proteins using NMR spectroscopy and small angle X-ray scattering. Four variants were created. In L53AI54A, two hydrophobic residues within helix III are truncated, preventing helix III from docking stably onto the developing hydrophobic core. In two other variants, the six residues encompassing the native helix III were replaced with three (H3G3) or six (H3G6) glycine residues. In the fourth variant, YY, two native tyrosine residues (Tyr55 and Tyr56) were re-introduced into H3G6 to examine their role in determining the properties of the intermediate ensemble. All four variants show variable peak intensities and broad peak widths, consistent with these proteins being conformationally dynamic. Chemical shift analyses demonstrated that L53AI54A and YY contain native-like secondary structure in helices I and IV, while helix II is partly formed and helix III is absent. Lack of NOEs and rapid NH exchange for L53AI54A, combined with detailed analysis of the backbone dynamics, indicated that the hydrophobic core of this variant is not uniquely structured, but fluctuates on the NMR timescale. The results demonstrate that though much of the native-like secondary structure of Im7 is present in the variants, their hydrophobic cores remain relatively fluid. The comparison of H3G3/H3G6 and L53AI54A/YY suggests that Tyr55 and/or Tyr56 interact with the three-helix core, leading other residues in this region of the protein to dock with the core as folding progresses. In this respect, the three-helix bundle acts as a template for formation of helix III and the creation of the native fold.  相似文献   

5.
The kinetic folding mechanism for Escherichia coli dihydrofolate reductase postulates two distinct types of transient intermediates. The first forms within 5 ms and has substantial secondary structure but little stability. The second is a set of four species that appear over the course of several hundred milliseconds and have secondary structure, specific tertiary structure, and significant stability (Jennings PA, Finn BE, Jones BE, Matthews CR, 1993, Biochemistry 32:3783-3789). Pulse labeling hydrogen exchange experiments were performed to determine the specific amide hydrogens in alpha-helices and beta-strands that become protected from exchange through the formation of stable hydrogen bonds during this time period. A significant degree of protection was observed for two subsets of the amide hydrogens within the dead time of this experiment (6 ms). The side chains of one subset form a continuous nonpolar strip linking six of the eight strands in the beta-sheet. The other subset corresponds to a nonpolar cluster on the opposite face of the sheet and links three of the strands and two alpha-helices. Taken together, these data demonstrate that the complex strand topology of this eight-stranded sheet can be formed correctly within 6 ms. Measurement of the protection factors at three different folding times (13 ms, 141 ms, and 500 ms) indicates that, of the 13 amide hydrogens displaying significant protection within 6 ms, 8 exhibit an increase in their protection factors from approximately 5 to approximately 50 over this time range; the remaining five exhibit protection factors > 100 at 13 ms. Only approximately half of the population of molecules form this set of stable hydrogen bonds. Thirteen additional hydrogens in the beta-sheet become protected from exchange as the set of native conformers appear, suggesting that the stabilization of this network reflects the global cooperativity of the folding reaction.  相似文献   

6.
The rate of exchange of peptide group NH hydrogens with the hydrogens of aqueous solvent is sensitive to neighboring side chains. To evaluate the effects of protein side chains, all 20 naturally occurring amino acids were studied using dipeptide models. Both inductive and steric blocking effects are apparent. The additivity of nearest-neighbor blocking and inductive effects was tested in oligo-and polypeptides and, suprisingly, confirmed. Reference rates for alanine-containing peptides were determined and effects of temperature considered. These results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured aligo- and polypeptides. The application of this approach to protein studies is discussed. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.  相似文献   

8.
A database of hydrogen-deuterium exchange results has been compiled for proteins for which there are published rates of out-exchange in the native state, protection against exchange during folding, and out-exchange in partially folded forms. The question of whether the slow exchange core is the folding core (Woodward C, 1993, Trends Biochem Sci 18:359-360) is reexamined in a detailed comparison of the specific amide protons (NHs) and the elements of secondary structure on which they are located. For each pulsed exchange or competition experiment, probe NHs are shown explicitly; the large number and broad distribution of probe NHs support the validity of comparing out-exchange with pulsed-exchange/competition experiments. There is a strong tendency for the same elements of secondary structure to carry NHs most protected in the native state, NHs first protected during folding, and NHs most protected in partially folded species. There is not a one-to-one correspondence of individual NHs. Proteins for which there are published data for native state out-exchange and theta values are also reviewed. The elements of secondary structure containing the slowest exchanging NHs in native proteins tend to contain side chains with high theta values or be connected to a turn/loop with high theta values. A definition for a protein core is proposed, and the implications for protein folding are discussed. Apparently, during folding and in the native state, nonlocal interactions between core sequences are favored more than other possible nonlocal interactions. Other studies of partially folded bovine pancreatic trypsin inhibitor (Barbar E, Barany G, Woodward C, 1995, Biochemistry 34:11423-11434; Barber E, Hare M, Daragan V, Barany G, Woodward C, 1998, Biochemistry 37:7822-7833), suggest that developing cores have site-specific energy barriers between microstates, one disordered, and the other(s) more ordered.  相似文献   

9.
The exchange of a large number of amide hydrogens in oxidized equine cytochrome c was measured by NMR and compared with structural parameters. Hydrogens known to exchange through local structural fluctuations and through larger unfolding reactions were separately considered. All hydrogens protected from exchange by factors greater than 10(3) are in defined H-bonds, and almost all H-bonded hydrogens including those at the protein surface were measured to exchange slowly. H-exchange rates do not correlate with H-bond strength (length) or crystallographic B factors. It appears that the transient structural fluctuation necessary to bring an exchangeable hydrogen into H-bonding contact with the H-exchange catalyst (OH(-)-ion) involves a fairly large separation of the H-bond donor and acceptor, several angstroms at least, and therefore depends on the relative resistance to distortion of immediately neighboring structure. Accordingly, H-exchange by way of local fluctuational pathways tends to be very slow for hydrogens that are neighbored by tightly anchored structure and for hydrogens that are well buried. The slowing of buried hydrogens may also reflect the need for additional motions that allow solvent access once the protecting H-bond is separated, although it is noteworthy that burial in a protein like cytochrome c does not exceed 4 angstroms. When local fluctuational pathways are very slow, exchange can become dominated by a different category of larger, cooperative, segmental unfolding reactions reaching up to global unfolding.  相似文献   

10.
T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. In earlier studies, an amide hydrogen/deuterium exchange pulse-labeling experiment detected a stable submillisecond intermediate that accumulates before the rate-limiting transition state. It involves the formation of structures in both the N and C-terminal regions. However, a native-state hydrogen exchange experiment subsequently detected an equilibrium intermediate that only involves the formation of the C-terminal domain. Here, using stopped-flow circular dichroism and fluorescence, amide hydrogen exchange-folding competition, and protein engineering methods, we re-examined the folding pathway of T4-lysozyme. We found no evidence for the existence of a stable folding intermediate before the rate-limiting transition state at neutral pH. In addition, using native-state hydrogen exchange-directed protein engineering, we created a mimic of the equilibrium intermediate. We found that the intermediate mimic folds with the same rate as the wild-type protein, suggesting that the equilibrium intermediate is an on-pathway intermediate that exists after the rate-limiting transition state.  相似文献   

11.
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.  相似文献   

12.
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.  相似文献   

13.
To examine the relationship between protein structural dynamics and measurable hydrogen exchange (HX) data, the detailed exchange behavior of most of the backbone amide hydrogens of Staphylococcal nuclease was compared with that of their neighbors, with their structural environment, and with other information. Results show that H-bonded hydrogens are protected from exchange, with HX rate effectively zero, even when they are directly adjacent to solvent. The transition to exchange competence requires a dynamic structural excursion that removes H-bond protection and allows exposure to solvent HX catalyst. The detailed data often make clear the nature of the dynamic excursion required. These range from whole molecule unfolding, through smaller cooperative unfolding reactions of secondary structural elements, and down to local fluctuations that involve as little as a single peptide group or side chain or water molecule. The particular motion that dominates the exchange of any hydrogen is the one that allows the fastest HX rate. The motion and the rate it produces are determined by surrounding structure and not by nearness to solvent or the strength of the protecting H-bond itself or its acceptor type (main chain, side chain, structurally bound water). Many of these motions occur over time scales that are appropriate for biochemical function.  相似文献   

14.
15.
Viral capsids are dynamic protein assemblies surrounding viral genomes. Despite the high-resolution structures determined by X-ray crystallography and cryo-electron microscopy, their in-solution structure and dynamics can be probed by hydrogen exchange. We report here using hydrogen exchange combined with protein enzymatic fragmentation and mass spectrometry to determine the capsid structure and dynamics of a human rhinovirus, HRV14. Capsid proteins (VP1-4) were labeled with deuterium by incubating intact virus in D(2)O buffer at neutral pH. The labeled proteins were digested by immobilized pepsin to give peptides analyzed by capillary reverse-phase HPLC coupled with nano-electrospray mass spectrometry. Deuterium levels incorporated at amide linkages in peptic fragments were measured for different exchange times from 12 sec to 30 h to assess the amide hydrogen exchange rates along each of the four protein backbones. Exchange results generally agree with the crystal structure of VP1-4,with extended, flexible terminal and surface-loop regions in fast exchange and folded helical and sheet structures in slow exchange. In addition, three alpha-helices, one from each of VP1-3, exhibited very slow exchange, indicating high stability of the protomeric interface. The beta-strands at VP3 N terminus also had very slow exchange, suggesting stable pentamer contacts. It was noted, however, that the interface around the fivefold axis had fast and intermediate exchange, indicating relatively more flexibility. Even faster exchange rates were found in the N terminus of VP1 and most segments of VP4, suggesting high flexibilities, which may correspond to their potential roles in virus uncoating.  相似文献   

16.
We develop a statistical mechanical theory for the mechanism of hydrogen exchange in globular proteins. Using the HP lattice model, we explore how the solvent accessibilities of chain monomers vary as proteins fluctuate from their stable native conformations. The model explains why hydrogen exchange appears to involve two mechanisms under different conditions of protein stability; (1) a “global unfolding” mechanism by which all protons exchange at a similar rate, approaching that of the denatured protein, and (2) a “stable-state” mechanism by which protons exchange at rates that can differ by many orders of magnitude. There has been some controversy about the stable-state mechanism: does exchange take place inside the protein by solvent penetration, or outside the protein by the local unfolding of a subregion? The present model indicates that the stable-state mechanism of exchange occurs through an ensemble of conformations, some of which may bear very little resemblance to the native structure. Although most fluctuations are small-amplitude motions involving solvent penetration or local unfolding, other fluctuations (the conformational distant relatives) can involve much larger transient excursions to completely different chain folds.  相似文献   

17.
Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted Ieqm) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the Ieqm variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na2SO4 in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding.  相似文献   

18.
Measurement of backbone amide hydrogen exchange rates can provide detailed information concerning protein structure, dynamics, and interactions. Although nuclear magnetic resonance is typically used to provide these data, its use is restricted to lower molecular weight proteins that are soluble at millimolar concentrations. Not subject to these limitations is a mass spectrometric approach for measuring deuterium incorporation into proteins that are subsequently proteolyzed by pepsin; the resulting peptide masses are measured using a flowing-fast atom bombardment ionization source (Zhang Z, Smith DL, 1993, Protein Sci 2:522-531). In the current study, amide deuterium incorporation for intact apo- and holo-myoglobin was measured using liquid chromatography coupled directly to an electrospray ionization (LC/MS) source. Electrospray ionization provided a more complete coverage of the protein sequence and permitted the measurement of deuterium incorporation into intact proteins. Tandem mass spectrometry was used to rapidly identify the peptic peptides. It was found that within 30 s, the amides in apo-myoglobin were 47% deuterated, whereas holo-myoglobin was 12% deuterated. Peptic digestion and LC/MS demonstrated that regions represented by peptic peptides encompassing positions 1-7, 12-29, and 110-134 were not significantly altered by removal of the heme. Likewise, destabilized regions were identified within positions 33-106 and 138-153.  相似文献   

19.
An important issue in modern protein biophysics is whether structurally homologous proteins share common stability and/or folding features. Flavodoxin is an archetypal alpha/beta protein organized in three layers: a central beta-sheet (strand order 21345) flanked by helices 1 and 5 on one side and helices 2, 3, and 4 on the opposite side. The backbone internal dynamics of the apoflavodoxin from Anabaena is analyzed here by the hydrogen exchange method. The hydrogen exchange rates indicate that 46 amide protons, distributed throughout the structure of apoflavodoxin, exchange relatively slowly at pH 7.0 (k(ex) < 10(-1) min(-1)). According to their distribution in the structure, protein stability is highest on the beta-sheet, helix 4, and on the layer formed by helices 1 and 5. The exchange kinetics of Anabaena apoflavodoxin was compared with those of the apoflavodoxin from Azotobacter, with which it shares a 48% sequence identity, and with Che Y and cutinase, two other alpha/beta (21345) proteins with no significant sequence homology with flavodoxins. Both similarities and differences are observed in the cores of these proteins. It is of interest that a cluster of a few structurally equivalent residues in the central beta-strands and in helix 5 is common to the cores.  相似文献   

20.
A [3H]Dalargin preparation with a molar radioactivity of 52 Ci/mmol was obtained by the high temperature solid-state catalytic isotope exchange (HSCIE) of tritium for hydrogen at 150°C. This tritium-labeled peptide was shown to completely retain its biological activity in the test of binding to opioid receptors from rat brain. The dissociation constant of the Dalargin-opioid receptor complex was found to be 4.3 nM. The dependences of the chemical yield and the molar radioactivity on the reaction time and temperature of HSCIE were determined. The activation energy of the HSCIE reaction for the peptide was calculated to be 32 kcal/mol. The amino acid analysis showed that tritium is distributed between all the amino acid residues of [3H]Dalargin at the HSCIE reaction, with the temperature growth significantly increasing the total tritium incorporation and, especially, enhancing the radioactivity incorporation into aromatic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号