首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochromes P450 (CYPs) form a gene superfamily involved in the biotransformation of numerous endogenous and exogenous natural and synthetic compounds. In humans, CYP3A4 is regarded as one of the most important CYPs due to its abundance in liver and its capacity to metabolize more than 50% of all clinically used drugs. It has been suggested that all CYP3s arose from a common ancestral gene lineage that diverged between 800 and 1100 million years ago, before the deuterostome-protostome split. While CYP3s are well known in mammals and have been described in lower vertebrates, they have not been reported in non-vertebrate deuterostomes. Members of the genus Ciona belong to the tunicates, whose lineage is thought to be the most basal among the chordates, and from which the vertebrate line diverged. Here we describe the cloning, exon-intron structure, phylogeny, and estimated expression of four novel genes from Ciona intestinalis. We also describe the gene structure and phylogeny of homologous genes in Ciona savignyi. Comparing these genes with other members of the CYP clan 3, show that the Ciona sequences bear remarkable similarity to vertebrate CYP3A genes, and may be an early deuterostome CYP3 line.  相似文献   

2.
Stanniocalcin (STC) is present throughout vertebrates, including humans, but a structure for STC has not been identified in animals that evolved before bony fish. The origin of this pleiotropic hormone known to regulate calcium is not clear. In the present study, we have cloned three stanniocalcins from two invertebrates, the tunicate Ciona intestinalis and the amphioxus Branchiostoma floridae. Both species are protochordates with the tunicates as the closest living relatives to vertebrates. Amphioxus are basal to both tunicates and vertebrates. The genes and predicted proteins of tunicate and amphioxus share several key structural features found in all previously described homologs. Both the invertebrate and vertebrate genes have four conserved exons. The predicted length of the single pro-STC in Ciona is 237 amino acids and the two pro-hormones in amphioxus are 207 and 210 residues, which is shorter than human pro-STCs at 247 and 302 residues due to expansion of the C-terminal region in vertebrate forms. The conserved pattern of 10 cysteines in all chordate STCs is crucial for identification as amphioxus and tunicate amino acids are only 14-23% identical with human STC1 and STC2. The 11th cysteine, which is the cysteine shown to form a homodimer in vertebrates, is present only in amphioxus STCa, but not in amphioxus STCb or tunicate STC, suggesting the latter two are monomers. The expression of stanniocalcin in Ciona is widespread as shown by RT-PCR and by quantitative PCR. The latter method shows that the highest amount of STC mRNA is in the heart with lower amounts in the neural complex, branchial basket, and endostyle. A widespread distribution is present also in mammals and fish for both STC1 and STC2. Stanniocalcin is a presumptive regulator of calcium in both Ciona and amphioxus, although the structure of a STC receptor remains to be identified in any organism. Our data suggest that amphioxus STCa is most similar to the common ancestor of vertebrate STCs because it has an 11th cysteine necessary for dimerization, an N-glycosylation motif, although not the canonical one in vertebrate STCs, and similar gene organization. Tunicate and amphioxus STCs are more similar in structure to vertebrate STC1 than to vertebrate STC2. The unique features of STC2, including 14 instead of 11 cysteines and a cluster of histidines in the C-terminal region, appear to be found exclusively in vertebrates.  相似文献   

3.
We suggest an extension of connexin orthology relationships across the major vertebrate lineages. We first show that the conserved domains of mammalian connexins (encoding the N-terminus, four transmembrane domains and two extracellular loops) are subjected to a considerably more strict selection pressure than the full-length sequences or the variable domains (the intracellular loop and C-terminal tail). Therefore, the conserved domains are more useful for the study of family relationships over larger evolutionary distances. The conserved domains of connexins were collected from chicken, Xenopus tropicalis, zebrafish, pufferfish, green spotted pufferfish, Ciona intestinalis and Halocynthia pyriformis (two tunicates). A total of 305 connexin sequences were included in this analysis. Phylogenetic trees were constructed, from which the orthologies and the presumed evolutionary relationships between the sequences were deduced. The tunicate connexins studied had the closest, but still distant, relationships to vertebrate connexin 36, 39.2, 43.4, 45 and 47. The main structure in the connexin family known from mammals pre-dates the divergence of bony fishes, but some additional losses and gains of connexin sequences have occurred in the evolutionary lineages of subsequent vertebrates. Thus, the connexin gene family probably originated in the early evolution of chordates, and underwent major restructuring with regard to gene and subfamily structures (including the number of genes in each subfamily) during early vertebrate evolution.  相似文献   

4.
The key position of the Ciona intestinalis basal to the vertebrate phylogenetic tree brings up the question of which respiratory proteins are used by the tunicate to facilitate oxygen transport and storage. The publication of the Ciona draft genome sequence suggests that globin genes are completely missing and that-like some molluscs and arthropods-the sea squirt uses hemocyanin instead of hemoglobin for respiration. However, we report here the presence and expression of at least four distinct globin gene/protein sequences in Ciona. This finding is in agreement with the ancestral phylogeny of the vertebrate globins. Moreover, it seems likely that the Ciona hemocyanin-like sequences have enzymatic instead of respiratory functions.  相似文献   

5.
Cytochrome P450 (CYP) proteins compose a highly diverse superfamily found in all domains of life. These proteins are enzymes involved in metabolism of endogenous and exogenous compounds. In vertebrates, the CYP2 family is one of the largest, most diverse and plays an important role in mammalian drug metabolism. However, there are more than 20 vertebrate CYP2 subfamilies with uncertain evolution and fairly discrete subfamily composition within vertebrate classes, hindering extrapolation of knowledge across subfamilies. To better understand CYP2 diversity, a phylogenetic analysis of 196 CYP2 protein sequences from 16 species was performed using a maximum likelihood approach and Bayesian inference. The analyses included the CYP2 compliment from human, fugu, zebrafish, stickleback, medaka, cow, and dog genomes. Additional sequences were included from rabbit, marsupial, platypus, chicken, frog, and salmonid species. Three CYP2 sequences from the tunicate Ciona intestinalis were utilized as the outgroup. Results indicate a single ancestral vertebrate CYP2 gene and monophyly of all CYP2 subfamilies. Two subfamilies (CYP2R and CYP2U) pre-date vertebrate diversification, allowing direct comparison across vertebrate classes, while all other subfamilies originated during vertebrate diversification, often within specific vertebrate lineages. Analysis of site-specific evolution indicates that some substrate recognition sites (SRS) previously proposed for CYP genes do not have elevated rates of evolution, suggesting that these regions of the protein are not necessarily important in recognition of CYP2 substrates. Type II functional divergence analysis identified multiple residues in the active site of CYP2F, CYP2A, and CYP2B proteins that have undergone radical biochemical changes and may be functionally important.  相似文献   

6.
7.
D Georges  C Schwabe 《FASEB journal》1999,13(10):1269-1275
The fossil record of tunicates reaches back to the upper Cambrian period. Ascidians have mobile, tadpole-like juvenile forms with a notochord, which inspired the classification of tunicates as Urochordata, i.e., predecessors of vertebrates. The genome of the tunicate Ciona intestinalis contains a relaxin coding region that is organized like a mammalian gene, i.e., signal peptide, B-chain domain, connecting peptide domain, followed by the A-chain domain with a stop codon after cysteine A-22. RNA-derived cDNA encodes a relaxin that is identical to the circulating form of the porcine hormone. In contrast to the porcine gene, the ascidian gene has no intron in the C-peptide domain, and in that respect is similar to the bombyxin gene of the silkworm. During the spawning period, only enough relaxin could be extracted and isolated from gonads of C. intestinalis for a partial sequence analysis. Remarkable as it may be, these findings suggest that relaxin is identical in pigs, whales, and the tunicate C. intestinalis.  相似文献   

8.
ADAMTS, constituting a recently discovered family of secreted zinc-dependent metalloproteases, have been shown to have critical physiological roles through identification of a number of natural animal and human gene mutations. The identification of six ADAMTS genes in the basal chordate Ciona intestinalis provides new insight into how, when and in what order the vertebrate orthologues have evolved. The phylogenetic assignments, based on sequences conserved across all genes, are supported by conserved domain structures within defined sub-families. The phylogeny and the frequent localisation of ADAMTS genes in paralogous regions of the genome are consistent with the vertebrate lineages having arisen by large scale or genome duplication. The high level of conservation in the protease active site of vertebrate orthologues within some sub-families suggests subfunctionalisation, whereas the greater divergence in others would favour the evolution of novel substrate specificities and these observations are borne-out where substrate-specificity is known. The expansion and sub-specialization of the ADAMTS family is a component of the increased complexity of extracellular matrix that is associated with the evolution of vertebrates.  相似文献   

9.
The Ciona intestinalis genome harbors three insulin-like genes: INS-L1, -L2 and -L3. Conserved synteny between the Ciona-human genomes predicts that Ciona INS-Ls are orthologous to the vertebrate insulin-relaxin family, but this relation cannot be inferred from molecular phylogeny. A conserved protein core with six cysteines; typical arrangement of B-, C- and A-protein domains; pro-protein maturation mode; and putative insulin receptor-binding sites were identified in Ciona INS-L proteins. ESTs used to assemble exonic sequences of INS-Ls combined with qRT-PCR analysis provided evidence that the predicted genes are expressed in the developing and adult Ciona. Our results support that Ciona INS-L1 is orthologous to the vertebrate insulin-like/relaxin genes, INS-L2 to insulin genes and INS-L3 to IGF genes. Our analysis also implies that the insulin-like/relaxin ancestor switched receptor type from tyrosine kinase- to GPCR-type, whereas insulin-IGF subfamily retained the tyrosine kinase-type of receptor. We propose that this receptor-switch occurred after the time when urochordates branched from the common chordate lineage, but before the two genome-duplications at the root of the vertebrates.  相似文献   

10.
Meisetz and the birth of the KRAB motif   总被引:3,自引:0,他引:3  
  相似文献   

11.
Members of the cytochrome P450 family 1 (CYP1s) are involved in the detoxification and bioactivation of numerous environmental pollutants and phytochemicals such as polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and flavonoids. The vertebrate CYP1 gene comprises four subfamilies: CYP1A, CYP1B, CYP1C, and CYP1D. Recently, the CYP1D gene was identified in fish, and subsequently in the platypus. These findings indicate the possibility that all vertebrates have a functional CYP1D subfamily. However, there is no information on the mammalian CYP1D gene. In this study we investigated the genomic location of CYP1D genes in mammals and other vertebrates in silico. We also performed phylogenetic analysis and calculated the identities and similarities of CYP1D sequences. The data from synteny and phylogenetic analyses of CYP1D genes demonstrated the evolutionary history of the CYP1 gene family. The results suggested that CYP1D became a nonfunctional pseudogene in human and bovine species; however, several other mammals possess functional CYP1D genes. The promoter regions of CYP1D genes were also examined. Unlike other CYP1 isoforms, few xenobiotic responsive element (XRE)-like sequences were found upstream of the CYP1D genes. Analysis of mammalian CYP1Ds also provided new insight into the relationship between CYP1 genes and the aryl hydrocarbon receptor.  相似文献   

12.
In vertebrates, a number of fibroblast growth factors (FGFs) have been shown to play important roles in developing embryos and adult organisms. However, the molecular relationships of the vertebrate FGFs are not yet completely understood, partly due to the divergence of their amino acid sequences. To solve this problem, we have identified six FGF genes in a basal chordate, the ascidian Ciona intestinalis. A phylogenetic analysis confidently assigned two of them to vertebrate FGF8/17/18 and FGF11/12/13/14, respectively. Based on the presence of the conserved domains within or outside of the FGF domains, we speculate that three of the other genes are orthologous to vertebrate FGF3/7/10/22, FGF4/5/6 and FGF9/16/20, respectively, although we cannot assign the sixth member to any of the vertebrate FGFs. A survey of the raw whole genome shotgun sequences of C. intestinalis demonstrated the presence of no FGF genes other than the six genes in the genome. The identification of these six FGF genes in the basal chordate gave us an insight into the diversification of specific subfamilies of vertebrate FGFs.  相似文献   

13.
Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactory/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved from pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrates and tunicates.  相似文献   

14.
Tunicates, the sister clade of vertebrates, have miniature genomes and numerous intronless genes compared to other animals. It is still unclear how the tunicates acquired such a large number of intronless genes. Here, we analyzed sequences and intron–exon organizations of homologous genes from two closely related tunicates, Ciona intestinalis and Ciona savignyi. We found seven cases in which ancestral introns of a gene were completely lost in a species after their divergence. In four cases, both the intronless copy and the intron-containing copy were present in the genome, indicating that the intronless copy was generated by retroduplication. In the other three cases, the intron-containing copy was absent, implying it was lost after retroduplication. This result suggests that retroduplication and loss of parental genes is a major mechanism for the accumulation of intronless genes in tunicates.  相似文献   

15.
Elphick MR 《Gene》2007,399(1):65-71
A gene encoding an ortholog of vertebrate CB(1)/CB(2) cannabinoid receptors was recently identified in the urochordate Ciona intestinalis (CiCBR; [Elphick, M.R., Satou, Y., Satoh, N., 2003. The invertebrate ancestry of endocannabinoid signalling: an orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene 302, 95-101.]). Here a cannabinoid receptor ortholog (BfCBR) has been identified in the cephalochordate Branchiostoma floridae. BfCBR is encoded by a single exon and is 410 amino acid residue protein that shares 28% sequence identity with CiCBR and 23% sequence identity with human CB(1) and human CB(2). The discovery of BfCBR and CiCBR and the absence of cannabinoid receptor orthologs in non-chordate invertebrates indicate that CB(1)/CB(2)-like cannabinoid receptors originated in an invertebrate chordate ancestor of urochordates, cephalochordates and vertebrates. Furthermore, analysis of the relationship of BfCBR and CiCBR with vertebrate CB(1) and CB(2) receptors indicates that the gene/genome duplication that gave rise to CB(1) and CB(2) receptors occurred in the vertebrate lineage. Identification of BfCBR, in addition to CiCBR, paves the way for comparative analysis of the expression and functions of these proteins in Branchiostoma and Ciona, respectively, providing an insight into the ancestral functions of cannabinoid receptors in invertebrate chordates prior to the emergence of CB(1) and CB(2) receptors in vertebrates.  相似文献   

16.
Retrotransposable elements have played an important role in shaping eukaryotic DNA, and their activity and turnover rate directly influence the size of genomes. With approximately 15,000 genes within 65-75 megabases, the marine tunicate Oikopleura dioica, a nonvertebrate chordate, has the smallest and most compact genome ever found in animals. Consistent with a massive elimination of retroelements, only one apparently novel clade of non-long terminal repeat (non-LTR) retrotransposons was detected within 41 megabases of nonredundant genomic sequences. In contrast, at least six clades of non-LTR elements were identified in the less compact genome of the tunicate Ciona intestinalis. Unexpectedly, Ty3/gypsy-related Tor LTR retrotransposons presented an astonishing level of diversity in O. dioica. They were generally poorly or apparently not corrupted, indicating recent activity. Both Tor3 and Tor4b families bore an envelope-like open reading frame, suggesting possible horizontal acquisition through infection. The Tor4b envelope-like gene might have been obtained from a paramyxovirus (RNA virus). Tor3 and Tor4b are phylogenetically clearly distinct from vertebrate retroviruses (Retroviridae) and are more reminiscent of certain insect and plant sequences. Tor elements potentially represent a so far unknown, ancient type of infectious retroelement in chordates. Their distribution and transmission dynamics in tunicates and other chordates deserve further study.  相似文献   

17.
1. The genome of Amphioxus was investigated by DNA reassociation techniques for the amount of repetitive and non-repetitive sequences and its pattern of organization. 2. A comparison of the amount of non-repetitive DNA between Amphioxus and the tunicate Ciona intestinalis does not support the hypothesis that the Cephalochordates have arisen from the Tunicates by polyploidy. 3. In the Amphioxus genome repetitive and non-repetitive elements are predominantly arranged in a short period interspersion pattern. Conclusions are presented as to the evolution of contrasting genome organization patterns among vertebrates.  相似文献   

18.
19.
20.
In the present study, genes involved in the pathways that establish cell polarity and cascades regulating actin dynamics were identified in the completely sequenced genome of Ciona intestinalis, a basal chordate. It was revealed that the Ciona genome contains orthologous genes of each component of aPKC-Par and PCP pathways and WASP/WAVE/SCAR and ADF/cofilin cascades, with less redundancy than the vertebrate genomes, suggesting that the conserved pathways/cascades function in Ciona development. In addition, the present study found that the orthologous proteins of five gene groups (Tc10, WRCH, RhoD, PLC-L, and PSKH) are conserved in humans and Ciona but not in Drosophila melanogaster, suggesting a similarity in the gene composition of Ciona to that of vertebrates. Ciona intestinalis, therefore, may provide refined clues for the study of vertebrate development and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号