首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age of potato seed-tubers influences protein synthesis during sprouting   总被引:2,自引:0,他引:2  
The effect of seed-tuber age on the ability of tuber tissue to synthesize protein during sprouting was examined. As seed-tuber age advanced from 4 to 32 months (at 4°C, 95% relative humidity), soluble protein concentration of tubers decreased linearly, with a concomitant increase in free amino acid concentration. The age-induced loss of tuber protein may thus be due to increased proteolysis, decreased protein synthesis, or both. Five- and 17-month-old seed-tubers were compared for their ability to incorporate radiolabeled amino acids into soluble protein at equivalent stages of sprout development. Tuber respiration was profiled through each sprouting stage to characterize the physiological status of the seed-tubers prior to incorporation studies. Five-month-old seed-tubers maintained a constant rate of respiration during sprouting. In contrast, respiration of 17-month-old tubers increased as sprout dry matter increased, resulting in a 2- to 3-fold greater respiratory rate from the older tubers, relative to the younger tubers, at similar stages of sprout development. Prior to sprouting, the rate of incorporation of amino acids into trichloroacetic acid-precipitable protein of tissue from 5-month-old tubers was 2. 9-fold higher than that from 17-month-old tubers. More importantly, protein-synthetic capacity of tissue from younger tubers increased about 1. 7-fold during sprout development. Despite the higher respiratory activity and faster total sprout dry matter accumulation from older seed-tubers, protein synthesis remained at a low and constant level through all stages of sprouting. Protein-synthetic capacity thus declines with advancing tuber age, and this may contribute to reduced growth potential during the latter stages of establishment by affecting the ability of seed-tubers to synthesize enzymes involved in mobilization and translocation of tuber reserves to developing plants.  相似文献   

2.
Potato leaf roll virus (PLRV) was detected by enzyme-linked immunosorbent assay (ELISA) when intact sprout, stem or leaf tissue disks were substituted for leaf or tuber extracts as test samples. Absorbance (A405) values increased with increasing number of disks per plate well. Readings with sprout disks were significantly higher than those with disks cut from other plant tissues or with tuber sap. A405 values obtained by using 7 or 5 sprout disks per well were near the maximum oneobtained with leaf sap. PLRV was slightly more efficiently detected by ELISA in light sprout disks than in etiolated sprout ones. When ten out of 34 healthy tubers were replaced by PLRV-infected ones in the tuber indexing test, the diseased samples werereliably detected with 5 etiolated sprout disks per well. The sprout disk sampling technique should be useful for qualitative evaluation of PLRV infection in sprouted potato tubers without necessity to wound them and using sprouts not long enough for maceration.  相似文献   

3.
Tuber dormancy and sprouting are commercially important potato traits as long-term tuber storage is necessary to ensure year-round availability. Premature dormancy release and sprout growth in tubers during storage can result in a significant deterioration in product quality. In addition, the main chemical sprout suppressant chlorpropham has been withdrawn in Europe, necessitating alternative approaches for controlling sprouting. Breeding potato cultivars with longer dormancy and slower sprout growth is a desirable goal, although this must be tempered by the needs of the seed potato industry, where dormancy break and sprout vigour are required for rapid emergence. We have performed a detailed genetic analysis of tuber sprout growth using a diploid potato population derived from two highly heterozygous parents. A dual approach employing conventional QTL analysis allied to a combined bulk-segregant analysis (BSA) using a novel potato whole-exome capture (WEC) platform was evaluated. Tubers were assessed for sprout growth in storage at six time-points over two consecutive growing seasons. Genetic analysis revealed the presence of main QTL on five chromosomes, several of which were consistent across two growing seasons. In addition, phenotypic bulks displaying extreme sprout growth phenotypes were subjected to WEC sequencing for performing BSA. The combined BSA and WEC approach corroborated QTL locations and served to narrow the associated genomic regions, while also identifying new QTL for further investigation. Overall, our findings reveal a very complex genetic architecture for tuber sprouting and sprout growth, which has implications both for potato and other root, bulb and tuber crops where long-term storage is essential.Subject terms: Genetic markers, Next-generation sequencing, Plant breeding, Agricultural genetics, Genetic mapping  相似文献   

4.
The role of endogenous gibberellins (GAs) in the regulation of potato (Solanum tuberosum) tuber dormancy was examined by determining: 1. changes in endogenous GA levels during natural dormancy progression, 2. the effects of GA biosynthesis inhibitors on tuber dormancy duration and 3. the dormancy status and tuber GA levels in a dwarf mutant of potato. The tubers (cv. Russet Burbank) used in these studies were still completely dormant after 98 days of storage. Between 98 and 134 days of storage, dormancy began to end and tubers exhibited limited (< 2 mm) sprout growth. Tuber dormancy weakened with further storage and tubers exhibited greater rates of sprout growth after 187 days of storage. Tubers stored for 212 days or longer were completely non-dormant and exhibited vigorous sprout growth. Immediately after harvest, the endogenous contents of GA19, GA20, and GA1 were relatively high (0.48-0.62 ng g fresh weight(-1)). The content of these GAs declined between 33 and 93 days of storage. Internal levels of GA19, GA20, and GA, rose slightly between 93 and 135 days of storage reaching levels comparable to those found in highly dormant tubers immediately after harvest. Levels of GA19, GA20, and GA1 continued to increase as sprout growth became more vigorous. Neither GA4 nor GA8 was detected in any tuber sample regardless of dormancy status. Dormant tubers exhibited a time-dependent increase in apparent GA sensitivity. Freshly harvested tubers were completely insensitive to exogenous GAs. As postharvest storage continued, exogenous GAs promoted premature dormancy release with GA1 and GA20 eliciting the greatest response. Injection of up to 5 microg tuber(-1) of kaurene, GA12, GA19 or GA8 had no effect on dormancy release. Sprout growth from non-dormant tubers was also promoted by exogenous GA in the following sequence of activity: GA1 = GA20 > GA19. Kaurene, GA12, and GA8 were inactive. Continuous exposure of developing tubers to inhibitors of GA biosynthesis (AMO-1618, ancymidol, or tetcyclasis) did not extend tuber dormancy but rather hastened dormancy release. Comparison of tuber dormancy and GA1 content in tubers of a wild-type and dwarf mutant of S. tuberosum ssp. andigena revealed a near-identical pattern of dormancy progression in spite of the absence of detectable levels of GA1 in tubers of the dwarf sibling at any time during dormancy progression. Collectively, these results do not support a role for endogenous GA in potato tuber dormancy release but are consistent with a role for GAs in the regulation of subsequent sprout growth.  相似文献   

5.
Analyses of the changes in starch and soluble sugars in sproutingpotatoes show that when a single terminal sprout grows it drawsupon the carbohydrates in every part of the tuber simultaneously;there appears to be no induced concentration gradients of thesecompounds through the tuber even though the starch content iseventually reduced to zero.  相似文献   

6.
The control of bud dormancy in potato tubers   总被引:5,自引:0,他引:5  
Potato (Solanum tuberosum L.) tuber buds normally remain dormant through the growing season until several weeks after harvest. In the cultivar Majestic, this innate dormancy persisted for 9 to 12 weeks in storage at 10° C, but only 3 to 4 weeks when the tubers were stored at 2° C. At certain stages, supplying cytokinins to tubers with innately dormant buds induced sprout growth within 2 d. The growth rate was comparable to that of buds whose innate dormancy had been lost naturally. Cytokinin-treatment did not accelerate the rates of cell division and cell expansion in buds whose innate dormancy had already broken naturally. Gibberellic acid did not induce sprout growth in buds with innate dormancy. We conclude that cytokinins may well be the primary factor in the switch from innate dormancy to the non-dormant state in potato tuber buds, but probably do not control the subsequent sprout growth.Abbreviations tio 6ade 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)purine, zeatin - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)-9--D-ribofuranosyl purine, zeatin riboside  相似文献   

7.
The potato tuber constitutes a model system for the study of dormancy release and sprouting, suggested to be regulated by endogenous plant hormones and their balance inside the tuber. During dormancy, potato tubers cannot be induced to sprout without some form of stress or exogenous hormone treatment. When dormancy is released, sprouting of the apical bud may be inhibited by sprout control agents or cold temperature. Dominance of the growing apical bud over other lateral buds decreases during storage and is one of the earliest morphophysiological indicators of the tuber's physiological age. Three main types of loss of apical dominance (AD) affect sprouting shape. Hallmarks of programmed cell death (PCD) have been identified in the tuber apical bud meristem (TAB-meristem) during normal growth, and are more extensive when AD is lost following extended cold storage or chemical stress. Nevertheless, the role of hormonal regulation in TAB-meristem PCD remains unclear.  相似文献   

8.
为探讨中国沙棘(Hippophae rhamnoides ssp.sinensis)伐桩萌枝的养分投资与分配机制,以陕西省定边县15a中国沙棘人工林为研究对象,设置不平茬(对照)和平茬高度0、10、20 cm处理,分析伐桩萌枝能力、非结构性碳水化合物(NSC)对平茬高度的响应规律及其因果关系.结果显示:(1)随平茬高度...  相似文献   

9.
Ethylene inhibited the tuberization of etiolated potato (Solanum tuberosum L. var. Red La Soda) sprout sections cultured in vitro. Carbon dioxide did not overcome the C2H4 inhibition but it was required for normal tuberization. Ethylene totally prevented root formation and development. It inhibited stolon elongation, and caused thickening and diageotropical growth of the stolon. In addition, C2H4 prevented the accumulation of both starch and red anthocyanin which are always present in a tuber. Ethylene also inhibited the kinetin-increased tuberization of sprout sections.  相似文献   

10.
G. M. Weir 《Mycopathologia》1962,18(3):184-188
Summary The respiration, as measured by oxygen uptake, was higher for healthy tissue adjacent to soft rots of apple (var. Bramley) caused byPenicillium expansum Link andThom. andBotrytis cinerea Fr. and of potato tuber (var. Arran Banner) caused byErwinia aroideae Townsend, than tissue at a more distant site. The respiration of tissue adjacent to a physiological rot caused by bruising was not affected. It was concluded that there is diffusion of a substance(s) from the site of infection which causes an increase in the rate of respiration of the adjacent tissue.This work formed part of a Ph. D. thesis submitted to the University of London, July 1961.  相似文献   

11.
Inhibitors of energy metabolism (3-ohlorophenylhydrazonomalononitrile, antimycin A, iodoacetamide, dicyclohexylcarbodiimide) but not of transport (uranyl ions) stimulate at low concentrations the uptake ofl-leucine,l-glutamic acid,l-argimne and, to a lesser degree, of 2-aminoisobutyric acid inSaccharomyces cerevisiae. The effect is apparent only after augmenting the energy reserves of cells by preincubation withd-glueose or, more strikingly, with ethanol. It is absent in a mutant (op1) lacking the translocation system for ADP-ATP in mitochondria. The presence of two different energy reserves for amino acid transport is indicated (one in energy-poor, the other in energy-rich cells). The stimulating effect appears to be caused by a retarded degradation of the transport proteins as occurs at a lowered level of mitochondria-produced ATP.  相似文献   

12.
Identification of molecular markers defining the end of tuber dormancy prior to visible sprouting is of agronomic interest for potato growers and the potato processing industry. In potato tubers, breakage of dormancy is associated with the reactivation of meristem function. In dormant meristems, cells are arrested in the G1/G0 phase of the cell cycle and re-entry into the G1 phase followed by DNA replication during the S phase enables bud outgrowth. Deoxyuridine triphosphatase (dUTPase) is essential for DNA replication and was therefore tested as a potential marker for meristem reactivation in tuber buds. The corresponding cDNA clone was isolated from potato by PCR. The deduced amino acid sequence showed 94% similarity to the tomato homologue. By employing different potato cultivars, a positive correlation between dUTPase expression and onset of tuber sprouting could be confirmed. Moreover, gene expression analysis of tuber buds during storage time revealed an up-regulation of the dUTPase 1 week before visible sprouting occurred. Further analysis using an in vitro sprout assay supported the assumption that dUTPase is a good molecular marker to define the transition from dormant to active potato tuber meristems.  相似文献   

13.
The transport of potassium, calcium, water, and carbohydratesfrom a potato tuber to a developing sprout has been followedover an 8-week period. From the resulting balance-sheet calculationshave been made of the concentration of ions in the xylem andphloem saps entering the sprout. Similarly, the concentrationof carbohydrates in the phloem has been calculated. Predictedionic concentrations in the xylem have been confirmed from analysesof xylem exudate. The pattern of results thus obtained indicatesthe presence of a circulatory system necessitating bidirectionaltransport within the phloem. The results obtained are thereforeinconsistent with the hypothesis that a mass flow of solutesis the mechanism of translocation within the phloem  相似文献   

14.
Ethanol breaks dormancy of the potato tuber apical bud   总被引:1,自引:0,他引:1  
Growing potato tubers or freshly harvested mature tubers have a dormant apical bud. Normally, this dormancy is spontaneously broken after a period of maturation of the tuber, resulting in the growth of a new sprout. Here it is shown that in in vitro-cultured growing and maturing tubers, ethanol can rapidly break this dormancy and re-induce growth of the apical bud. The in vivo promoter activity of selected genes during this secondary growth of the apical bud was monitored, using luciferase as a reporter. In response to ethanol, the expression of carbohydrate-storage, protein-storage, and cell division-related genes are rapidly down-regulated in tuber tissue. It was shown that dormancy was broken by primary but not by secondary alcohols, and the effect of ethanol on sprouting and gene expression in tuber tissue was blocked by an inhibitor of alcohol dehydrogenase. By contrast, products derived from alcohol dehydrogenase activity (acetaldehyde and acetic acid) did not induce sprouting, nor did they affect luciferase reporter gene activity in the tuber tissue. Application of an inhibitor of gibberellin biosynthesis had no effect on ethanol-induced sprouting. It is suggested that ethanol-induced sprouting may be related to an alcohol dehydrogenase-mediated increase in the catabolic redox charge [NADH/(NADH+NAD+)].  相似文献   

15.
16.
Regulation of potato tuber sprouting   总被引:1,自引:0,他引:1  
  相似文献   

17.
Nature of enhanced respiration during sprouting of aged potato seed-tubers   总被引:2,自引:0,他引:2  
Respiration of 18-month-old Solarium tuberosum L. tubers was about 53% greater than that of 6-month-old tubers during sprouting at 23°C; yet, a significant loss of sprout vigor in the older tubers was apparent. Involvement of alternative oxidase (AO) in the age-induced difference in tuber respiration was assessed. AO was only detected in immunoblots if tissue disks from tubers were pre-incubated for 24 h prior to isolation of submitochondrial membrane particles (SMPs). No AO1 was detected in SMPs from nonincubated tuber tissue of either age, indicating that it was not contributing to tuber respiration during sprouting as previously thought. Respiratory control and ADP/O ratios indicated that oxidative phosphorylation was fully coupled to electron transport in mitochondria isolated from 6- and 18-month-old tubers. Cytochrome c oxidase (EC 1.9.3.1) activities of intact mitochondria were also not affected by tuber age. The difference in respiration during sprouting was unique to whole tubers, as oxygen consumption by mitochondria from young and oid tubers was equal on a milligram protein basis. Sprouting 18-month-old tubers had 15% more mitochondrial protein per gram fresh weight than did 6-month-old tubers. Older tubers also produced more ATP than younger tubers prior to and during sprouting, through a fully coupled, Cyt-mediated respiratory pathway, reduced sprout vigor notwithstanding. From 5 to 10 days of sprouting, coinciding with development of the age-induced difference in whole-tuber respiration, ATP concentration in 18-month-old tubers increased to become 52% higher than that in 6-month-old tubers. ATP synthase (EC 3.6.1.34), assessed by SDS-PAGE and immunoblots of β- and oligomycin-sensitivity conferring protein-subunits, also increased as a proportion of SMP protein in older tubers during this period. Relative to 6-month-old tubers, the increased respiration and associated oxidative phosphorylation of 18-rnonth-old tubers during sprouting were probably in response to a lower adenylate energy charge (AEC) prior to sprouting (from 0 fo 5 days). From 5 to 10 days of sprouting, AEC of 18-rnonth-old tubers increased to equal that of 6-month-old tubers and the two tuber ages maintained the same AEC for the remainder of the 20-day sprouting interval. Higher respiration and lower AEC of older tubers in storage at 4°C, along with the fact that older tubers respired at a higher rate to achieve the same AEC as younger tubers during sprouting, indicate greater utilization of ATP by older tubers.  相似文献   

18.
Some of the aromatic compounds evolved by stored potato tubers have been identified by combined GLC-MS. Of the identified compounds, benzothiazole, 1,4-dimethylnaphthalene and 1,6-dimethylnaphthalene are comparatively potent inhibitors of sprout growth in the potato tuber. The growth suppressing activity of the two dimethylnaphthalenes is comparable with that of isopropyl-(N-3-chlorophenyl)-carbamate, which is used commercially in potato storage.  相似文献   

19.
The incidence of coiled-sprout was determined in Scotch and local-grown Arran Pilot and Duke of York seed tubers which had been stored at 10°, 4° and 15° C. and in a farm store with no temperature control. All four tuber types were planted in the field and, in addition, the two types of Duke of York were planted in Perlite at 7°, 10° and 15° C. In the field, and when maintained at 7° and 10° C, the percentage of sprouts coiling and the intensity of coiling was greater in tubers stored at 10° and 15° C. than at 4° C. There was no coiling when the Duke of York tubers were planted at 15° C. In a further experiment tubers were stored at 20° C. in the light and dark and samples were planted monthly for 3 months at temperatures of 7°, 10° and 15° C. During the following 3-month period only light-stored were planted because of the excessive amount of tip-death in the tubers stored in the dark. There was very little coiling in the dark-stored tubers. In the first two plantings of the light-stored tubers there was virtually no coiling of those planted at 15° C. There was some, however, at 7° and 10° C. In subsequent plantings there was more coiling and no effect of planting temperature. Attempts to isolate Verticiculum nubilum from sprouts were successful in only a small percentage of attempts and it was not possible to demonstrate any difference between its distribution on coiled and normal sprouts. It was not possible to induce coiling by infection of sprouts with spores of V. nubilum. Over a wide range of sprout sizes the amount of coiling was a function of sprout size at planting. However, the parts which coiled were those in the apical bud of the sprout at the time of planting and hence contributed only a small amount to the total sprout size. It is likely, therefore, that the correlation between coiling and sprout size reflects the changing metabolism of the elongating regions of sprouts with their increase in length, these regions developing in such a way as to produce a greater tendency to coiling. The internal reactions concerned in these changes, however, are not known.  相似文献   

20.
The effects of pot size, timing of the application of paclobutrazol (PTZ) and gibberellic acid (GA3), and the counteractive effect of these two compounds on growth and tuber yield of greenhouse-grown Norland and Russet Burbank potatoes were investigated. Plants were grown either in 1.5-liter pots (15 cm deep) or 3.0-liter pots (18 cm deep) and received a foliar application of either 1.5 mm PTZ or 9 × 10−3 mm GA3 at early or late stolon initiation. Some plants that had been foliar treated with 1.5 mm PTZ at early stolon initiation were foliar treated with 9 × 10−3 mm GA3 at late stolon initiation. PTZ reduced haulm length in both cultivars significantly, particularly when the treatment was applied at early stolon initiation, but the late treatment reduced haulm length only when growing in 3.0-liter pots. Irrespective of the timing of treatment, GA3 increased haulm length in Norland growing in both pot sizes, but the treatment increased haulm length in Russet Burbank only when applied at late stolon initiation. GA3 applied after PTZ did not overcome the growth-inhibiting effect of the PTZ treatment. The PTZ treatment effectively increased usable tuber number/plant (UTN) in Norland, but PTZ had no effect on UTN in Russet Burbank. PTZ reduced usable tuber weight/plant (UTW) only in Norland growing in 1.5-liter pots. By contrast, GA3 increased UTN only when treated at late stolon initiation of 1.5-liter pot-grown Norland, whereas the same treatment was effective when applied only at early stolon initiation for Russet Burbank. For Norland, the increase in UTN by early applied PTZ was reduced by the subsequent application of GA3. The use of 3.0-liter pots for minituber production in both Norland and Russet Burbank appears to have no advantage over growing in 1.5-liter pots, particularly when PTZ or GA3 is used to enhance tuberization. Received May 30, 1997; accepted February 3, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号