首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeting of transforming growth factor beta (TGF-β) to the extracellular matrix (ECM) by latent TGF-β binding proteins (LTBPs) regulates the availability of TGF-β for interactions with endothelial cells during their quiescence and activation. However, the mechanisms which release TGF-β complexes from the ECM need elucidation. We find here that morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) resulted in membrane-type 1 matrix metalloproteinase (MT1-MMP) -mediated solubilization of latent TGF-β complexes from the ECM by proteolytic processing of LTBP-1. These processes required the activities of PKC and ERK1/2 signaling pathways and were coupled with markedly increased MT1-MMP expression. The functional role of MT1-MMP in LTBP-1 release was demonstrated by gene silencing using lentiviral short-hairpin RNA as well as by the inhibition with tissue inhibitors of metalloproteinases, TIMP-2 and TIMP-3. Negligible effects of TIMP-1 and uPA/plasmin system inhibitors indicated that secreted MMPs or uPA/plasmin system did not contribute to the release of LTBP-1. Current results identify MT1-MMP-mediated proteolytic processing of ECM-bound LTBP-1 as a mechanism to release latent TGF-β from the subendothelial matrix.  相似文献   

2.
3.
KISS1 is a broadly functional secreted proprotein that is then processed into small peptides, termed kisspeptins (KP). Since sequence analysis showed cleavage at KR or RR dibasic sites of the nascent protein, it was hypothesized that enzyme(s) belonging to the proprotein convertase family of proteases process KISS1 to generate KP. To this end, cell lines over-expressing KISS1 were treated with the proprotein convertase inhibitors, Dec-RVKR-CMK and α1-PDX, and KISS1 processing was completely inhibited. To identify the specific enzyme(s) responsible for KISS1 processing, mRNA expression was systematically analyzed for six proprotein convertases found in secretory pathways. Consistent expression of the three proteases – furin, PCSK5 and PCSK7 – were potentially implicated in KISS1 processing. However, shRNA-mediated knockdown of furin – but not PCSK5 or PCSK7 – blocked KISS1 processing. Thus, furin appears to be the essential enzyme for the generation of kisspeptins.  相似文献   

4.
Generation of the amyloid peptide through proteolytic processing of the amyloid precursor protein by beta- and gamma-secretases is central to the etiology of Alzheimer's disease. beta-secretase, known more widely as the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), has been identified as a transmembrane aspartic proteinase, and its ectodomain has been reported to be cleaved and secreted from cells in a soluble form. The extracellular domains of many diverse proteins are known to be cleaved and secreted from cells by a process known as ectodomain shedding. Here we confirm that the ectodomain of BACE1 is secreted from cells and that this processing is up-regulated by agents that activate protein kinase C. A metalloproteinase is involved in the cleavage of BACE1 as hydroxamic acid-based metalloproteinase inhibitors abolish the release of shed BACE1. Using potent and selective inhibitors, we demonstrate that ADAM10 is a strong candidate for the BACE1 sheddase. In addition, we show that the BACE1 sheddase is distinct from alpha-secretase and, importantly, that inhibition of BACE1 shedding does not influence amyloid precursor protein processing at the beta-site.  相似文献   

5.
Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.  相似文献   

6.
Neuropilins (Nrp) are type I transmembrane proteins that function as receptors for vascular endothelial growth factor (VEGF) and class III Semaphorin (Sema3) ligand families. Sema3s function as potent endogenous angiogenesis inhibitors but require proteolytically processing by furin to compete with VEGF for Nrp binding. This processing liberates a C-terminal arginine (CR) that is necessary for binding to the b1 domain of Nrp, a common feature shared by Nrp ligands. The CR is necessary but not sufficient for potent Nrp inhibition, and the role of upstream residues is unknown. We demonstrate that the second-to-last residue (C-1), immediately upstream of the CR, plays a significant role in controlling competitive ligand binding by orienting the C-terminus for productive Nrp binding. With the use of a peptide library derived from Sema3F, C-1 residues that preferentially adopt an extended bound-like conformation, including proline and β-branched amino acids, were found to produce the most avid competitors. Consistent with this, analysis of the binding thermodynamics revealed that more favorable entropy is responsible for the observed binding enhancement of C-1 proline. We further tested the effect of the C-1 residue on Sema3F processing by furin and found an inverse relationship between processing and inhibitory potency. Analysis of all Sema3 family members reveals two non-equivalent furin processing sites differentiated by the presence of either a C-1 proline or a C-1 arginine and resulting in up to a 40-fold difference in potency. These data reveal a novel regulatory mechanism of Sema3 activity and define a fundamental mechanism for preferential Nrp binding.  相似文献   

7.
This work generated many truncated proteins and Glu(385) to Ala (E(385)/A) mutants of the human metalloproteinase and thrombospondin 1 (METH-1 or ADAMTS1) and specific antibodies. METH-1 was an active endopeptidase and both the metalloproteinase and the disintegrin/cysteine-rich domains were required for the proteinase activity. A point mutation at the zinc-binding site (E(385)/A) abolished the catalytic activity. METH-1 protein function may be modulated through proteolytic cleavage at multiple sites. One 135 kDa species had an NH(2)-terminal sequence of L(33)GRPSEEDEE. A species at 115 kDa and some other protein bands began with F(236)VSSHRYV(243), indicating that METH-1 proenzyme might be activated by a proprotein convertase such as furin by cleaving the R(235)-F(236) peptide bond. This cleavage was not an autocatalytic process since the E(385)/A mutants were also processed. Furthermore, a 52 kDa band with an NH(2)-terminal sequence of L(800)KEPLTIQV resulted from the digestion between the first and the second thrombospondin 1-like motifs in the spacer region of the extracellular matrix-binding domains.  相似文献   

8.
Angiogenesis is a complex process that can be regarded as a series of sequential events comprising a variety of tissue cells. The major problem when studying angiogenesis in vitro is the lack of a model system mimicking the various aspects of the process in vivo. In this study we have used two in vitro models, each representing different and distinct aspects of angiogenesis. Differentially expressed genes in the two culture forms were identified using the suppression subtractive hybridization technique to prepare subtracted cDNA libraries. This was followed by a differential hybridization screen to pick up overexpressed clones. Using comparative multiplex RT-PCR we confirmed the differential expression and showed differences up to 14-fold. We identified a broad range of genes already known to play an important role during angiogenesis like Flt1 or TIE2. Furthermore several known genes are put into the context of endothelial cell differentiation, which up to now have not been described as being relevant to angiogenesis, like NrCAM, Claudin14, BMP-6, PEA-15 and PINCH. With ADAMTS4 and hADAMTS1/METH-1 we further extended the set of matrix metalloproteases expressed and regulated by endothelial cells.  相似文献   

9.
Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to the snake venom metalloproteinases and disintegrins. ADAMTS-1 is a unique ADAM family protein with respect to the presence of thrombospondin type I motifs and the capacity to bind to the extracellular matrix. Because ADAMTS-1 has a potential zinc-binding motif in the metalloproteinase domain, we examined in this study whether ADAMTS-1 is an active metalloproteinase by means of the proteinase trapping mechanism of alpha2-macroglobulin. We found that the soluble type of ADAMTS-1 protein is able to form a covalent-binding complex with alpha2-macroglobulin. Furthermore, the point mutation within the zinc-binding motif of ADAMTS-1 protein eliminates its capacity to bind to alpha2-macroglobulin. These data demonstrate that the metalloproteinase domain of ADAMTS-1 is catalytically active. In addition, we showed that the removal of the pro-domain from the ADAMTS-1 precursor is impaired in the furin-deficient cell line, LoVo, and that the processing ability of the cells is restored by the co-expression of the furin cDNA. These data provide evidence that the ADAMTS-1 precursor is processed in vivo by furin endopeptidase in the secretory pathway. Consequently, ADAMTS-1 is an active metalloprotease that is associated with the extracellular matrix. This study strongly suggests that ADAMTS-1 may play a role in the inflammatory process through its protease activity.  相似文献   

10.
Histone H1 and its C-terminal lysine rich fragments were recently found to be potent inhibitorsof furin,a mammalian proprotein convertase.However,its role in the regulation of furin-dependent proproteinprocessing remains unclear.Here we report that histone H1 efficiently blocks furin-dependent pro-yonWillebrand factor(pro-vWF)processing in a dose-dependent manner.Coimmunoprecipitation and immunof-luorescence studies confirmed that histone H1 could interact with furin,and the interaction mainly took placeon the cell surface.We noted that histone H1 was released from cells undergoing necrosis and apoptosisinduced by H_2O_2.Our findings suggested that histone H1 might be involved in extracellular and/or intracellu-lar furin regulation.  相似文献   

11.
Proprotein convertases (PCs) have been proposed to play a role in tumor necrosis factor-alpha converting enzyme (TACE) processing/activation. Using the furin-deficient LoVo cells, as well as the furin-proficient synoviocytes and HT1080 cells expressing the furin inhibitor alpha(1)-PDX, we demonstrate that furin activity alone is not sufficient for effective maturation and activation of the TACE enzyme. Data from in vitro and in vivo cleavage assays indicate that PACE-4, PC5/PC6, PC1 and PC2 can directly cleave the TACE protein and/or peptide. PC inhibition in macrophages reduced the release of soluble TNF-alpha from transmembrane pro-TNF-alpha. We therefore conclude that furin, in addition to other candidate PCs, is involved in TACE maturation and activation.  相似文献   

12.
In mammals, seven proprotein convertases (PCs) cleave secretory proteins after basic residues, and four of them are called furin-like PCs: furin, PC5, PACE4, and PC7. In vitro, they share many substrates. However, furin is essential during development since deficient embryos die at embryonic day 11 and exhibit multiple developmental defects, particularly defects related to the function of endothelial cells. To define the role of furin in endothelial cells, an endothelial cell-specific knockout (ecKO) of the Furin gene was generated. Newborns die shortly after birth, indicating that furin is essential in these cells. Magnetic resonance imaging revealed that ecKO embryos exhibit ventricular septal defects (VSD) and/or valve malformations. In addition, primary cultures of wild-type and ecKO lung endothelial cells revealed that ecKO cells are unable to grow. Growth was efficiently rescued by extracellular soluble furin. Analysis of the processing of precursors of endothelin-1 (ET-1), adrenomedullin (Adm), transforming growth factor β1 (TGF-β1), and bone morphogenetic protein 4 (BMP4) confirmed that ET-1, Adm, and TGF-β1 are in vivo substrates of endothelial furin. Mature ET-1 and BMP4 forms were reduced by ~90% in ecKO purified endothelial cells from lungs.  相似文献   

13.
Extracellular human immunodeficiency virus-1 (HIV-1) Tat protein and Tat-derived peptides are biologically active but mechanisms of Tat processing are not known. Within the highly conserved basic region of HIV-1 Tat protein (amino acids, a.a. 48-56), we identified two putative furin cleavage sites and showed that Tat protein was cleaved in vitro at the second site, RQRR\ (a.a. 53-56\). This in vitro cleavage was blocked by a monoclonal antibody that binds near the cleavage site or by the furin inhibitor alpha-1 PDX. Monocytoid cells rich in furin also degraded Tat and this process was slowed by the furin inhibitor or the specific monoclonal antibody. Furin processing did not affect the rates for Tat uptake and nuclear accumulation in HeLa or Jurkat cells, but the transactivation activity was greatly reduced. Furin processing is a likely mechanism for inactivating extracellular HIV-1 Tat protein.  相似文献   

14.
Matrix metalloproteinases regulate pathophysiological events by processing matrix proteins and secreted proteins. Previously, we demonstrated that soluble heat shock protein B1 (HSPB1) is released primarily from endothelial cells (ECs) and regulates angiogenesis via direct interaction with vascular endothelial growth factor (VEGF). Here we report that MMP9 can cleave HSPB1 and release anti-angiogenic fragments, which play a key role in tumorprogression. We mapped the cleavage sites and explored their physiological relevance during these processing events. HSPB1 cleavage by MMP9 inhibited VEGF-induced ECs activation and the C-terminal HSPB1 fragment exhibited more interaction with VEGF than did full-length HSPB1. HSPB1 cleavage occurs during B16F10 lung progression in wild-type mice. Also, intact HSPB1 was more detected on tumor endothelium of MMP9 null mice than wild type mice. Finally, we confirmed that secretion of C-terminal HSPB1 fragment was significantly inhibited lung and liver tumor progression of B16F10 melanoma cells and lung tumor progression of CT26 colon carcinoma cells, compared to full-length HSPB1. These data suggest that in vivo MMP9-mediated processing of HSPB1 acts to regulate VEGF-induced ECs activation for tumor progression, releasing anti-angiogenic HSPB1 fragments. Moreover, these findings potentially explain an anti-target effect for the failure of MMP inhibitors in clinical trials, suggesting that MMP inhibitors may have pro-tumorigenic effects by reducing HSPB1 fragmentation.  相似文献   

15.
16.
17.
Furin-mediated processing of Pro-C-type natriuretic peptide   总被引:5,自引:0,他引:5  
C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family that is involved in a variety of homeostatic processes. Here we characterize the processing essential for the conversion of the precursor, human pro-CNP, to the biologically active hormone. In human embryonic kidney 293 and chondrosarcoma SW 1353 cells, recombinant pro-CNP was converted into a mature peptide intracellularly as detected by Western analysis. Expression of recombinant human corin, a proatrial natriuretic peptide convertase, did not enhance the processing of pro-CNP in these cells. The processing of pro-CNP was inhibited in the presence of an inhibitor of the endoprotease furin but was not affected by inhibitors of matrix metalloproteinases and tumor necrosis factor-alpha convertase. In furin-deficient human colon adenocarcinoma LoVo cells, no conversion of recombinant pro-CNP to CNP was detected. Expression of recombinant human furin in LoVo cells restored the ability of these cells to process pro-CNP. Furthermore, incubation of purified recombinant human furin with LoVo cell lysate containing pro-CNP led to the conversion of the precursor to a mature peptide. The furin-processed CNP was shown to be biologically active in a cell-based cGMP assay. These results demonstrate that furin is a critical enzyme for the processing of human pro-CNP.  相似文献   

18.
Endorepellin, the C-terminal domain of the heparan sulfate proteoglycan perlecan, possesses angiostatic activity. The terminal laminin-like globular (LG3) domain of endorepellin appears to possess most of the biological activity on endothelial cells. LG3 protein has been detected in the urine of patients with end-stage renal disease and in the amniotic fluid of pregnant women with premature rupture of fetal membranes. These findings suggest that proteolytic processing of endorepellin and the generation of LG3 might have biological significance. In this study, we have identified specific enzymes of the bone morphogenetic protein-1 (BMP-1)/Tolloid family of metalloproteases that cleave LG3 from recombinant endorepellin at the physiologically relevant site and that cleave LG3 from endogenous perlecan in cultured mouse and human cells. The BMP-1/Tolloid family of metalloproteases is thereby implicated in the processing of a major basement membrane proteoglycan and in the liberation of an anti-angiogenic factor. Using molecular modeling, site-directed mutagenesis and angiogenic assays, we further demonstrate that LG3 activity requires specific amino acids involved in Ca(2+) coordination.  相似文献   

19.
Matrix metalloproteases regulate both physiological and pathological events by processing matrix proteins and growth factors. ADAMTS1 in particular is required for normal ovulation and renal function and has been shown to modulate angiogenesis. Here we report that TSP1 and 2 are substrates of ADAMTS1. Using a combination of mass spectrometry and Edman degradation, we mapped the cleavage sites and characterized the biological relevance of these processing events. ADAMTS1 cleavage mediates the release of polypeptides from the trimeric structure of both TSP1 and 2 generating a pool of antiangiogenic fragments from matrix-bound thrombospondin. Using neo-epitope antibodies we confirmed that processing occurs during wound healing of wild-type mice. However, TSP1 proteolysis is decreased or absent in ADAMTS1 null mice; this is associated with delayed wound closure and increased angiogenic response. Finally, TSP1-/- endothelial cells revealed that the antiangiogenic response mediated by ADAMTS1 is greatly dependent on TSP1. These findings have unraveled a mechanistic explanation for the angiostatic functions attributed to ADAMTS1 and demonstrated in vivo processing of TSP1 under situations of tissue repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号