首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The apparent obesity epidemic in the industrialized world is not explained completely by increased food intake or decreased energy expenditure. Once obesity develops in genetically predisposed individuals, their obese body weight is avidly defended against chronic caloric restriction. In animals genetically predisposed toward obesity, there are multiple abnormalities of neural function that prime them to become obese when dietary caloric density and quantity are raised. Once obesity is fully developed, these abnormalities largely disappear. This suggests that obesity might be the normal state for such individuals. Formation of new neural circuits involved in energy homeostasis might underlie the near permanence of the obese body weight. Such neural plasticity can occur during both nervous system development and in adult life. Maternal diabetes, obesity, and undernutrition have all been associated with obesity in the offspring of such mothers, especially in genetically predisposed individuals. Altered brain neural circuitry and function often accompanies such obesity. This enhanced obesity may then be passed on to subsequent generations in a feed‐forward, upward spiral of increasing body weight across generations. Such findings suggest a form of “metabolic imprinting” upon genetically predisposed neural circuits involved in energy homeostasis. Centrally acting drugs used for obesity treatment lower the defended body weight and alter the function of neural pathways involved in energy homeostasis. But they generally have no permanent effect on body weight or neural function. Thus, early identification of obesity‐prone mothers, infants, and adults and treatment of early obesity may be the only way to prevent the formation of permanent neural connections that promote and perpetuate obesity in genetically predisposed individuals.  相似文献   

2.
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.  相似文献   

3.
GABAergic neurons in the caudal ventrolateral medulla (CVLM) are driven by baroreceptor inputs relayed via the nucleus tractus solitarius (NTS), and they inhibit neurons in rostral ventrolateral medulla to reduce sympathetic nerve activity (SNA) and arterial pressure (AP). After arterial baroreceptor denervation or lesions of the NTS, inhibition of the CVLM continues to increase AP, suggesting additional inputs also tonically activate the CVLM. This study examined whether the NTS contributes to baroreceptor-independent drive to the CVLM and whether glutamate promotes baroreceptor- and NTS-independent activation of the CVLM to tonically reduce SNA. In addition, we evaluated whether altering central respiratory drive, a baroreceptor-independent regulator of CVLM neurons, influences glutamatergic inputs to the CVLM. Splanchnic SNA and AP were measured in chloralose-anesthetized, ventilated, paralyzed rats. The infusion of nitroprusside decreased AP below threshold for baroreceptor afferent firing (<50 mmHg) and increased SNA to 209+/-22% (P<0.05), but the subsequent inhibition of the NTS by microinjection of the GABA(A) agonist muscimol did not further increase SNA. In contrast, after inhibition of the NTS, blockade of glutamatergic inputs to CVLM by microinjection of kynurenate increased SNA (274+/-54%; P<0.05; n=7). In vagotomized rats with baroreceptors unloaded, inhibition of glutamatergic inputs to CVLM evoked a larger rise in SNA when central respiratory drive was increased (219+/-16% vs. 271+/-17%; n=5; P<0.05). These data suggest that baroreceptor inputs provide the major drive for the NTS-mediated excitation of the CVLM. Furthermore, glutamate tonically activates the CVLM to reduce SNA independent of the NTS, and this excitatory input appears to be affected by the strength of central respiratory drive.  相似文献   

4.
Neuronal injury triggers the release of ciliary neurotrophic factor (CNTF), promoting local neuronal repair but producing systemic effects of anorexia and lean body weight loss. Due to the rapid rate of systemic protein loss stimulated by CNTF, we hypothesized involvement of the hepatic ubiquitin-proteasome proteolytic (UPP) pathway in CNTF-induced proteolysis. To assess the role of central CNTF in systemic UPP regulation, we measured hepatic UPP mRNA and proteasome activity in a rat model of neuronal injury and determined alterations induced by intracerebroventricular (ICV) administration of CNTF-neutralizing antibody or additional exogenous CNTF. We also assessed proteolytic parameters and nutritional status by measuring caloric intake, body weight, and protein levels. We produced neuronal injury by implanting a lateral ventricle cannula and giving daily ICV saline bolus injections, which increased hepatic 20S proteasome mRNA and enzymatic activity while reducing caloric intake, body weight, and protein levels compared to controls. Administration of ICV anti-CNTF antibodies (but not control antibodies) prevented these effects. Addition of exogenous CNTF augmented the weight loss along with the increases in 20S proteasome mRNA and proteolytic activity induced by neuronal injury. We conclude that CNTF decreases lean body weight through a combination of appetite inhibition and UPP pathway activation.  相似文献   

5.
The nose provides an effective way for delivering neuropeptides to the central nervous system, bypassing the blood-brain barrier and avoiding systemic side effects. Thereby intranasal neuropeptide administration enables the modulation of central nervous signaling pathways of body weight regulation and cognitive functions. Central nervous control of energy homeostasis is assumed to rely on hypothalamic neuropeptidergic pathways that are triggered by the peripheral adiposity signals insulin and leptin conveying the amount of body fat to the brain. Melanocortins, including alpha-melanocyte stimulating hormone (alpha-MSH), are essential for inducing anorexigenic/catabolic effects, i.e. for inhibiting caloric intake and increasing energy expenditure. Insulin, in addition to its function as an adiposity signal, also influences memory formation. Here we present a series of studies on the intranasal administration of MSH/ACTH(4-10), a melanocortin receptor agonist, and of insulin. Prolonged administration of MSH/ACTH(4-10) induced weight loss in normal-weight, but not in overweight humans. Intranasal insulin reduced body fat and improved memory functions in the absence of adverse peripheral side effects. Our results may contribute to the future development of therapeutic strategies in disorders like obesity and cognitive impairments that derive from dysfunctions of central nervous neuropeptidergic pathways.  相似文献   

6.
The ovarian hormone estradiol reduces meal size and food intake in female rats, at least in part by increasing the satiating potency of CCK. Here we used c-Fos immunohistochemistry to determine whether estradiol increases CCK-induced neuronal activation in several brain regions implicated in the control of feeding. Because the adiposity signals leptin and insulin appear to control feeding in part by increasing the satiating potency of CCK, we also examined whether increased adiposity after ovariectomy influences estradiol's effects on CCK-induced c-Fos expression. Ovariectomized rats were injected subcutaneously with 10 microg 17beta-estradiol benzoate (estradiol) or vehicle once each on Monday and Tuesday for 1 wk (experiment 1) or for 5 wk (experiment 2). Two days after the final injection of estradiol or vehicle, rats were injected intraperitoneally with 4 microg/kg CCK in 1 ml/kg 0.9 M NaCl or with vehicle alone. Rats were perfused 60 min later, and brain tissue was collected and processed for c-Fos immunoreactivity. CCK induced c-Fos expression in the nucleus of the solitary tract (NTS), area postrema (AP), paraventricular nucleus of the hypothalamus (PVN), and central nucleus of the amygdala (CeA) in vehicle- and estradiol-treated ovariectomized rats. Estradiol treatment further increased this response in the caudal, subpostremal, and intermediate NTS, the PVN, and the CeA, but not in the rostral NTS or AP. This action of estradiol was very similar in rats tested before (experiment 1) and after (experiment 2) significant body weight gain, suggesting that adiposity does not modulate CCK-induced c-Fos expression or interact with estradiol's ability to modulate CCK-induced c-Fos expression. These findings suggest that estradiol inhibits meal size and food intake by increasing the central processing of the vagal CCK satiation signal.  相似文献   

7.
Interruption of the baroreceptor reflex by transection of afferent nerves (sinoaortic denervation; SAD) or lesions of nucleus tractus solitarius (NTS) elevates sympathetic nerve activity (SNA) and arterial pressure (AP). However, within 1 wk, mean AP returns to normal despite the absence of baroreflexes. In this study, we examine central mechanisms that control AP in chronic baroreceptor-denervated rats. In urethane-anesthetized rats (1.5 g/kg i.v.) after autonomic ganglionic blockade (5 mg/kg i.v. chlorisondamine), alpha1-adrenergic-mediated pressor responses (1-100 microg/kg i.v. phenylephrine) were not altered by chronic lesions of NTS, indicating vascular reactivity to sympathetic stimulation is normal. Transection of the spinal cord at T1 profoundly decreased AP and was not further reduced by chlorisondamine in control or denervated rats. Inhibition of the rostral ventrolateral medulla (RVLM) by microinjections of muscimol (100 pmol/side) decreased AP to levels not further reduced by chlorisondamine in control rats, rats with SAD, and rats with NTS lesions. Blockade of GABA(A) receptors in the RVLM (50 pmol/side bicuculline) increased AP similarly in control rats and denervated rats. In agreement, inhibition of the caudal ventrolateral medulla (CVLM) by microinjections of muscimol or blockade of glutamatergic inputs (2.7 nmol/side kynurenate) produced comparable increases in AP in control and denervated rats. These data suggest the RVLM continues to drive the SNA that regulates AP in the chronic absence of baroreceptor inputs. In addition, despite the absence of a tonic excitatory input from NTS, in chronic baroreceptor-denervated rats glutamatergic inputs drive the CVLM to tonically inhibit the RVLM. Baroreceptor-independent regulation of the ventrolateral medulla may underlie central mechanisms contributing to the long-term control of AP.  相似文献   

8.
Nicotine has been reported to regulate food intake and body weight. But the mechanisms underlying these roles have not been fully elucidated. In the present study, we showed that acute administration of nicotine (0.5 mg/kg s.c.) could activate prolactin-releasing peptide (PrRP)-bearing neurons in the A2 area of the NTS of rats, suggesting that PrRP may be associated with nicotine-induced effects in the central nervous system (CNS). We next treated rats with nicotine chronically (4 mg/kg/day for 7 days i.p.), and the results showed that the body weight was strongly reduced and food intake was greatly suppressed compared to the vehicle control group (p<0.01). Immunocytochemical studies revealed that PrRP-bearing neurons in the NTS were evidently activated after chronic administration of nicotine, suggesting that PrRP was involved in the regulation of nicotine-mediated body weight loss and food intake suppression in rats. We also found that acute/chronic administration of nicotine activated PrRP-negative neurons in the NTS, and the majority of these neurons were shown to be TH-negative, suggesting that noncatecholaminergic, PrRP-negative neurons in the NTS are associated with the roles of nicotine. Nicotine has also been shown to stimulate the secretion of ACTH, a stress responsive hormone. In the present study, rats received nicotine (0.5 mg/kg s.c.) or saline followed by restraint stress for 30 min. The immunocytochemical results showed that nicotine/stress and saline/stress both activated the majority of the PrRP neurons in the NTS, there being no significant difference between the two treatments (p>0.05). Nicotine/stress also greatly activated PrRP/TH-negative neurons in the NTS. Saline/stress, however, caused much lower effect on the activation of PrRP/TH-negative neurons. In addition, the activation effect of nicotine/stress on PrRP/TH-negative neurons was much stronger than that of nicotine alone (p<0.01). These results indicated that PrRP was associated with stress responses, but it had little effect on nicotine-mediated stress responses. On the other hand, nicotine and restraint stress may synergistically activate PrRP/TH-negative neurons in the NTS. Taken together, our data show that PrRP is involved in the nicotine-induced regulation of body weight and food intake, but may not be involved in the mediation of nicotine on stress responses. PrRP/TH-negative neurons in the NTS are also associated with the roles of nicotine in the CNS.  相似文献   

9.
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

10.
Autophagy has been recently demonstrated to control cell and tissue homeostasis, including the functions of various metabolic tissues. However, it remains unclear whether autophagy is critical for the central nervous system and particularly the hypothalamus for exerting metabolic regulation. Using autophagy-related protein 7 (Atg7) as an autophagic marker, this work showed that autophagy was highly active in the mediobasal hypothalamus of normal mice. In contrast, chronic development of dietary obesity was associated with autophagic decline in the mediobasal hypothalamus. To investigate the potential role of autophagy in the hypothalamic control of metabolic physiology, a mouse model was developed with autophagic inhibition in the mediobasal hypothalamus using site-specific delivery of lentiviral shRNA against Atg7. This model revealed that hypothalamic inhibition of autophagy increased energy intake and reduced energy expenditure. These metabolic changes were sufficient to increase body weight gain under normal chow feeding and exacerbate the progression of obesity and whole-body insulin resistance under high-fat diet feeding. To explore the underlying mechanism, this study found that defective hypothalamic autophagy led to hypothalamic inflammation, including the activation of proinflammatory IκB kinase β pathway. Using brain-specific IκB kinase β knockout mice, it was found that the effects of defective hypothalamic autophagy in promoting obesity were reversed by IκB kinase β inhibition in the brain. In conclusion, hypothalamic autophagy is crucial for the central control of feeding, energy, and body weight balance. Conversely, decline of hypothalamic autophagy under conditions of chronic caloric excess promotes hypothalamic inflammation and thus impairs hypothalamic control of energy balance, leading to accelerated development of obesity and comorbidities.  相似文献   

11.
12.
Axons of histamine (HA)-containing neurons are known to project from the posterior hypothalamus to many areas of the brain, including the nucleus tractus solitarii (NTS), a central brain structure that plays an important role in regulating arterial pressure. However, the functional significance of NTS HA is still not fully established. In this study, we microinjected HA or 2-pyridylethylamine, a HA-receptor H(1)-specific agonist, into the NTS of urethane-anesthetized Wister rats to identify the potential functions of NTS HA on cardiovascular regulation. When HA or H(1)-receptor-specific agonist was bilaterally microinjected into the NTS, mean arterial pressure (MAP) and heart rate (HR) were significantly increased, whereas pretreatment with the H(1)-receptor-specific antagonist cetirizine into the NTS significantly inhibited the cardiovascular responses. The maximal responses of MAP and HR changes induced by HA or H(1)-receptor-specific agonist were dose dependent. We also confirmed gene expression of HA receptors in the NTS and that the expression level of H(1) mRNA was higher than that of the other subtypes. In addition, we found that H(1) receptors are mainly expressed in neurons of the NTS. These findings suggested that HA within the NTS may play a role in regulating cardiovascular homeostasis via activation of H(1) receptors expressed in the NTS neurons.  相似文献   

13.
Obesity is critically related with the development of metabolic and pathophysiological alterations among which non-alcoholic fatty liver disease (NAFLD) is of especial relevance. Although there are numerous strategies to successfully treat obesity, the prevention of weight regain still remains challenging for individuals who have undergone weight loss programs. In such context, diet and physical activity are considered essential for the regulation of body weight and lipid metabolism. In this study, rats were fed a high-fat diet (HFD) to induce obesity and alterations in hepatic lipid metabolism. Obese rats were then treated with single or combined strategies of caloric restriction, physical exercise, and/or pharmacological treatment with an appetite suppressant, to lose weight, reverse the obesity-related alterations in hepatic morphology and lipid metabolism and maintain the beneficial effects of the interventions used. HFD induced excess body weight, hepatic steatosis, altered fatty acid profile, dysregulated gene expression of lipogenic and lipolytic enzymes, as well as plasma markers of liver damage, and modifications in liver antioxidant enzyme activity. Such alterations were ameliorated by caloric restriction in combination with a mixed training protocol and/or food-intake inhibitor administration during a weight loss intervention period of 3 weeks, and the beneficial effects remained after 6 weeks of weight maintenance, with some interesting interactions observed. In conclusion, weight loss strategies assayed were efficient at correcting the obesogenic action of a HFD and related alterations in hepatic functionality through different molecular mechanisms. The beneficial effects were also evident along the post-intervention maintenance period to avoid body weight regain.  相似文献   

14.
Central effects of neuromedin U in the regulation of energy homeostasis   总被引:12,自引:0,他引:12  
Neuromedin U (NMU) is a brain-gut peptide whose peripheral activities are well-understood but whose central actions have yet to be clarified. The recent identification of two NMU receptors in rat brain has provided a springboard for further investigation into its role in the central nervous system. Intracerebroventricular administration of NMU to free-feeding rats decreased food intake and body weight. Conversely, NMU increased gross locomotor activity, body temperature, and heat production. NMU, a potent endogenous anorectic peptide, serves as a catabolic signaling molecule in the brain. Further investigation of the biochemical and physiological functions of NMU will help our better understanding of the mechanisms of energy homeostasis.  相似文献   

15.
Intraventricular corticotropin releasing hormone (CRH) suppresses food intake and body weight as a stress response. Insulin, acting within the brain, also suppresses food intake and body weight, and this suppression is related to caloric homeostasis. We determined if increased insulin within the brain potentiates the anorexic effects of intraventricular CRH. Rats were food deprived for 17 h each day and then given 30-min access to Ensure. One-half received continuous third ventricular infusion of synthetic cerebrospinal fluid via osmotic minipumps, and one-half received insulin (0.6 mU/day). During the infusion, rats also received 0, 0.1, 1.0, or 5.0 microg of CRH into the lateral ventricle just before access to Ensure. Insulin alone had no effect on Ensure intake or body weight. CRH dose dependently reduced Ensure intake in both groups, and the reduction was greater in the insulin group. Hence, central insulin potentiated the ability of centrally administered CRH to suppress food intake. These findings suggest that stress-related influences over food intake, particularly those mediated via CRH, interact with relative adiposity as signaled to the brain by central insulin.  相似文献   

16.
Feedback signals arising from the oral cavity and upper gastrointestinal tract contribute to the control of meal size. To assess how these signals are integrated at central sites involved in ingestive control, we compared levels of c-Fos activation in the nucleus of the solitary tract (NTS) and area postrema (AP) in response to meal ingestion or gastric and duodenal infusions in the rat. Ingestion of a liquid diet to satiety induced significant fos-like immunoreactivity (FLI) at multiple levels of the NTS and within the AP. The restriction of intake to one-half the normal ingestion of a rat did not result in significant FLI, although gastric infusion of this liquid diet volume did. Fast bolus infusion resulted in greater FLI than did the same volume infused at a rate to mimic that of normal ingestion. Prior experience with gastric infusions did not affect the amounts of FLI within the NTS or AP. In rats with pyloric cuffs blocking flow from the stomach to the intestine, combined gastric load and duodenal nutrient elicited significantly greater FLI than either gastric or duodenal infusions alone. These data demonstrate that neural activation arising from meal-related stimuli are integrated at the level of the NTS.  相似文献   

17.
Prevention of obesity and increase in longevity in obesity-prone rodents can be achieved by long-term moderate dietary restriction. In order to examine the likelihood that caloric restriction could have similar salutary effects in humans, rhesus monkeys, after reaching mature adult stature, were placed on a protocol to clamp or stabilize body weight by weekly caloric adjustment Further weight gain was prevented by this caloric titration procedure, and thus middle-age onset obesity, which is very common in this species, was prevented. The present study analyzed daily food intake for six weight-clamped monkeys and six ad libitum fed age-matched animals over a 3- year period, ages 18.5 to 21.5 years. After approximately 9 years of caloric restriction the daily calorie load to maintain stable adult body weight proved to be 40% less than the amount ingested by ad libitum fed animals. Calories per kg body weight did not differ significantly between the groups although the ad libitum fed animals were significantly fatter than the weight-clamped group. Prevention of obesity using this weight clamp protocol has also maintained lower insulin levels and higher glucose tolerance in the restricted animals.  相似文献   

18.
19.
The recently described endothelium derived constricting factor endothelin (ET) is a 21 amino acid peptide which is the most potent endogenous vasoconstrictor yet described. Binding sites for this peptide have been demonstrated within the circumventricular structures of the brain. One of these structures, the area postrema (AP), has been implicated in central cardiovascular control mechanisms. We have therefore examined the effects of AP microinjection of ET on blood pressure in urethane-anaesthetised rats. Such treatment resulted in dose-dependent biphasic changes in arterial blood pressure (increases followed by decreases). Low doses of ET (0.2-1.0 pmol) induced significant increases (P less than 0.01), and high doses (5.0 pmol) significant decreases (P less than 0.01), while at intermediate concentrations (2.0 pmol) ET caused significant increases (P less than 0.05) followed by significant decreases (P less than 0.01) in mean blood pressure. Other vasoconstrictors were found to be without effect following AP administration, suggesting these changes to be the result of specific action of ET. In contrast, both ET and methoxamine had similar cardiovascular actions when microinjected into regions anatomically adjacent to the AP such as the NTS, indicating that vasoconstriction in these areas induces changes in femoral arterial blood pressure. These data suggest a specific role for ET as a chemical messenger involved in central nervous system control of the cardiovascular system within AP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号