首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. We recorded impulse activity of thermosensitive hypothalamic neurons in rat brain slices during superfusion with ethanol at constant temperatures and during slow sinusoidal temperature changes.

2. At constant temperatures of 37 °C, ethanol application typically induced a triphasic change of the firing rate: An initial excitation turned into complete inhibition followed by spontaneous recovery to higher firing rates.

3. Ethanol application increased the neurons’ temperature sensitivity remarkably.

4. Our data indicate complex neuromodulatory effects of ethanol with different time delays which interfere with basic mechanisms of temperature transduction.

Keywords: Hypothalamic neurons; Brain slices; Temperature sensitivity; Ethanol effects  相似文献   


2.
Changes in the mean firing rate of posterior hypothalamic neurons were studied in experiments on unanesthetized cats in response to elevation of the brain temperature by 0.7–1.5°C and the skin temperature by 3–5°C separately or simultaneously. Altogether 85 neurons were studied in 14 animals: 11 responded to only one form of temperature stimulation, whereas in 16 neurons changes in the firing pattern (in most cases in the same direction) were observed in response to both forms of temperature stimulation. Different types of responses of these neurons were established. Sensitivity to the central temperature stimulus was increased in some neurons of this group when skin temperature stimulation was intensified.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 613–619, November–December, 1976.  相似文献   

3.
4.
Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia, and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction.  相似文献   

5.
6.
7.
8.
Hypothalamic neurons with nuclear receptors for steroid hormones provide opportunities to relate individual biosynthetic and electrical changes to hormone-driven behaviors. Successful work with female rodent reproductive behavior has proven that it is possible to define a neural circuit for a vertebrate behavior. In contrast to what might be expected from an invertebrate system, results from several approaches to neuronal gene expression show the complexity of hypothalamic control, even over this simple mammalian behavior. This is not a 1 hormone-1 gene-1 behavior system. Neither is there just one mode of hormonal induction. Certain steroid hormone effects can multiply each other, showing how a clear endocrine signal could be discerned among other variations in neural activity.  相似文献   

9.
Carbon dioxide effects on the ventilatory response to sustained hypoxia   总被引:1,自引:0,他引:1  
We examined the interrelation between CO2 and the ventilatory response to moderate (80% arterial saturation) sustained hypoxia in normal young adults. On a background of continuous CO2-stimulated hyperventilation, hypoxia was introduced and sustained for 25 min. Initially, with the introduction of hypoxia onto hypercapnia, there was a brisk additional increase in inspiratory minute ventilation (VI) to 284% of resting VI, but the response was not sustained and hypoxic VI declined by 36% to a level intermediate between the initial increase and the preexisting hypercapnic hyperventilation. Through the continuous hypercapnia, the changes in hypoxic ventilation resulted from significant alterations in tidal volume (VT) and mean inspiratory flow (VT/TI) without changes in respiratory timing. In another experiment, sustained hypoxia was introduced on the usual background of room air, either with isocapnia or without maintenance of end-tidal CO2 (ETCO2) (poikilocapnic hypoxia). Regardless of the degree of maintenance of ETCO2, during 25 min of sustained hypoxia, VI showed an initial brisk increase and then declined by 35-40% of resting VI to a level intermediate between the initial response and resting room air VI. For both isocapnia and poikilocapnic conditions, the attenuation of VI was an expression of a diminished VT. Thus the decline in ventilation with sustained hypoxia occurred regardless of the background ETCO2, suggesting that the mechanism underlying the hypoxic decline is independent of CO2.  相似文献   

10.
W Zhou  S W Jones 《Biophysical journal》1996,70(3):1326-1334
We have investigated the effects of external pH (pHo) on whole-cell calcium channel currents in bullfrog sympathetic neurons. The peak inward current increased at alkaline pHo and decreased at acidic pHo. We used tail currents to distinguish effects of pHo on channel gating and permeation. There were large shifts in the voltage dependence of channel activation (approximately 40 mV between pHo and 9.0 and pHo 5.6), which could be explained by binding of H+ to surface charge according to Gouy-Chapman theory. To examine the effects of pHo on permeation, we measured tail currents at 0 mV, following steps to + 120 mV to maximally activate the channels. Unlike most previous studies, we found only a approximately 10% reduction in channel conductance from pHo 9.0 to pHo 6.4, despite a approximately 25 mV shift of channel activation. At lower pHo the channel conductance did decrease, which could be described by binding of H+ to a site with pKa = 5.1. In some cells, there was a separate slow decrease in conductance at low pHo, possibly because of changes in internal pH. These results suggest that changes in current at pHo > 6.4 result primarily from a shift in the voltage dependence of channel activation. A H(+)-binding site can explain a rapid decrease in channel conductance at lower pHo. The surface charge affecting gating has little effect on the local ion concentration near the pore, or on the channel conductance.  相似文献   

11.
Fixation of carbon dioxide has been demonstrated for extracts from Crithidia fasciculata, Trypanosoma mega and Trypanosoma brucei brucei bloodstream and culture forms. The enzymes involved in this fixation were found to be ADP-stimulated phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32), 'malic' enzyme (E.C. 1.1.138-40) and pyruvate carboxylase (E.C. 6.4.1.1). The subcellular localization of these enzymes has been investigated in all three organisms. Products of short and long term fixation experiments were separated and identified. The importance of carboxylation reactions is discussed in relation to the maintenance of oxidized and reduced coenzyme levels.  相似文献   

12.
Atmospheric CO2 concentration ([CO2]) and temperature are likely to increase in the future and may change plant growth and composition characteristics. Rhizoma peanut (Arachis glabrata Benth.) and bahiagrass (Paspalum notatum Flügge) were grown on a natural field soil in temperature-gradient greenhouses to evaluate the effects of elevated [CO2] and temperature on tissue composition and digestibility during the establishment year. Carbon dioxide levels were maintained at 365 (ambient) and 640 μL CO2 L–1 air. The temperature-gradient greenhouses were regulated to obtain air temperature sectors of 0.2, 1.5, 2.9, and 4.5 °C above ambient. Samples were taken of previously undefoliated herbage at 57, 86, 121, 148, and 217 days after planting and entire plots were harvested at 218 days after planting. Elevated [CO2] increased total nonstructural carbohydrate concentration in rhizoma peanut leaves by almost 50%. Rhizoma peanut leaf N concentration was 6% lower at elevated than at ambient [CO2]. The N concentration in new rhizomes of rhizoma peanut was increased by high [CO2], while the N concentration in bahiagrass was not affected by temperature or [CO2]. No effects of [CO2] and temperature were found on neutral detergent fibre in rhizoma peanut leaves or stems; however, elevated [CO2] increased neutral detergent fibre in bahiagrass leaves. Only at season end was in vitro organic matter digestion of rhizoma peanut higher at ambient (623 g kg–1) than at elevated [CO2] (609 g kg–1). Elevated [CO2] had a greater effect on tissue composition of rhizoma peanut than of bahiagrass. These data suggest that elevated temperature and CO2-induced changes in chemical composition of forage species adapted to humid subtropics will be relatively small, particularly for C4 species.  相似文献   

13.
Subcellular distribution of clathrin in cultured hypothalamic neurons.   总被引:1,自引:0,他引:1  
The subcellular distribution of clathrin has been examined in developing hypothalamic neurons cultured in a chemically defined medium up to synapse formation (12-13 days in vitro) and exposed, or not, to a depolarizing concentration of KCl (60 mM for 3 min) followed, or not, by a return to control KCl concentration (3 mM KCl for 3 min). Previous studies have shown that such treatments induce in synaptic boutons a rapid vesicle depletion followed by massive restoration. Using an enzyme immunoassay, we have compared the relative proportion of assembled and unassembled pools of clathrin as a function of exposure to depolarizing or repolarizing concentrations of KCl. In parallel we have localized clathrin at the electron microscopic level using immunoperoxidase. Clathrin concentration in culture is lower (0.36 vs 0.75%) and the proportion of unassembled clathrin is much higher than in the adult brain (82 vs 14%). These proportions were not affected by depolarizing or repolarizing treatments. Morphologically clathrin was exclusively detected in two neuron compartments: perikarya and synaptic boutons. In perikarya clathrin was localized as a thick coat on plasma membrane coated pits and in the Golgi zone on coated buds and vesicles, presumably located in a trans compartment. In synaptic boutons clathrin immunoreaction was found as an irregular thin rim around synaptic vesicles, whatever the polarization state of the cells, but coated vesicles were extremely rare. Taken together these findings raise the problem of the functional meaning and localization of the large unassembled pool of clathrin in such neurons and question its role in vesicular traffic in synaptic boutons.  相似文献   

14.
目的:探讨高原低氧对雌雄新生大鼠下丘脑-腺垂体-肾上腺皮质轴中枢部位肽能神经元发育的影响.方法:在低压氧舱中模拟高海拔低氧,用放免法测定精氨酸加压素(AVP)和下丘脑促肾上腺皮质激素释放激素(CRF)含量.结果:无论是在2 300 m对照海拔,还是在5 000 m模拟海拔,雌雄生后大鼠具相同的发育模式.低氧下发育至21 d时,CRF水平显著低于对照;相反,21 d及28 d时,低氧组AVP水平高于对照.结论:下丘脑CRF和AVP神经元间不同的发育模式可能与它们的功能及发育阶段特性相异有关.  相似文献   

15.
Although numerous data showing severe morphological impairment of magnocellular and parvocellular hypothalamic neurons due to chronic alcoholic consumption have been gathered from animal experiments, only one study (Harding et al., 1996) was performed on POST MORTEM human brain. This study showed a reduction in the number of vasopressin (VP)-immunoreactive neurons in the supraoptic (SON) and paraventricular (PVN) nuclei, but did not provide any data regarding the effect of chronic alcohol intake on human parvocellular neurons. In order to assess whether the changes observed in the animal model also occur in humans and provide a structural basis for the results of clinical tests, we performed immunohistochemical and morphometric analysis of magnocellular (VP and oxytocin, OT) and parvocellular (corticotropin-releasing hormone, CRH) neurons in post-mortem brains of patients afflicted with chronic alcoholic disease. We analyzed 26-male alcoholics and 22 age-matched controls divided into two age groups--"young" (< 40 yr) and "old" (> 40 yr). Hypothalamic sections were stained for OT, VP, and CRH. The analysis revealed: 1) decrease in VP-immunoreactivity in the SON and PVN as well as OT-immunoreactivity in the SON in alcoholic patients; 2) increase in OT-immunoreactivity in the PVN; 3) increase in CRH-immunoreactivity in parvocellular neurons in the PVN. Furthermore, the proportion of cells containing CRH and VP was increased in alcoholics. These findings indicate that chronic alcohol consumption does indeed impair the morphology of magnocellular neurons. The enhancement of CRH-immunoreactivity and increased co-production of CRH and VP in parvocellular neurons may be due to a decline in glucocorticoid production, implied by the hypoplasic impairment of adrenal cortex we observed in alcoholics during the course of this study.  相似文献   

16.
This paper uses arguments of geochemical mass balance to arrive at an estimate of the partial pressure of carbon dioxide in the terrestrial atmosphere very early in earth history. It appears that this partial pressure could have been as large as 10 bars. This large estimate depends on two key considerations. First, volatiles were driven out of the interior of the earth during the course of earth accretion or very shortly thereafter. This early degassing was a consequence of rapid accretion, which gave the young earth a hot and rapidly convecting interior. Second, the early earth lacked extensive, stable continental platforms on which carbon could be stored in the form of carbonate minerals for geologically significant periods of time. In the absence of continental platforms on the early earth, the earth's carbon must have been either in the atmosphere or ocean or in the form of shortlived sedimentary deposits on ephemeral sea floor.  相似文献   

17.
18.
The central pathways and mediators involved in sympathoexcitatory responses to circulating leptin are not well understood, although the arcuate-paraventricular nucleus (ARC-PVN) pathway likely plays a critical role. In urethane-anesthetized rats, ipsilateral intracarotid artery (ICA) injection of murine leptin (100 microg/kg) activated most PVN neurons tested. These responses were reduced by intracerebroventricular injection of the melanocortin subtype 3 and 4 receptor (MC3/4-R) antagonist SHU-9119 (0.6 nmol). The MC3/4-R agonist MTII (0.6 nmol icv) activated PVN neurons. Some PVN neurons that were excited by ICA leptin were inhibited by local application of neuropeptide Y (NPY, 2.5 ng). ICA leptin (100 microg/kg) excited presympathetic rostral ventrolateral medulla neurons and renal sympathetic nerve activity without significant change in blood pressure or heart rate; these effects were mimicked by intracerebroventricular injection of MTII (0.6 nmol). These data provide in vivo electrophysiological evidence to support the hypothesis that circulating leptin activates the sympathetic nervous system by stimulating the release of alpha-melanocyte-stimulating hormone in the vicinity of PVN neurons that are inhibited by the orexogenic peptide NPY.  相似文献   

19.
Vesicle fusion in eukaryotic cells is mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). In neurons, the t-SNARE SNAP-25 is essential for synaptic vesicle fusion but its exact role in this process is unknown. We have isolated a SNAP-25 temperature-sensitive paralytic mutant in Drosophila, SNAP-25(ts). The mutation causes a Gly50 to Glu change in SNAP-25's first amphipathic helix. A similar mutation in the yeast homologue SEC9 also results in temperature sensitivity, implying a conserved role for this domain in secretion. In vitro-generated 70 kDa SNARE complexes containing SNAP-25(ts) are thermally stable but the mutant SNARE multimers (of approximately 120 kDa) rapidly dissociate at 37 degrees C. The SNAP-25(ts) mutant has two effects on neurotransmitter release depending upon temperature. At 22 degrees C, evoked release of neurotransmitter in SNAP-25(ts) larvae is greatly increased, and at 37 degrees C, the release of neurotransmitter is reduced as compared with controls. Our data suggest that at 22 degrees C the mutation causes the SNARE complex to be more fusion competent but, at 37 degrees C the same mutation leads to SNARE multimer instability and fusion incompetence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号