首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate decarboxylase (GadB) from Escherichia coli is a hexameric, pyridoxal 5′-phosphate-dependent enzyme catalyzing CO2 release from the α-carboxyl group of l-glutamate to yield γ-aminobutyrate. GadB exhibits an acidic pH optimum and undergoes a spectroscopically detectable and strongly cooperative pH-dependent conformational change involving at least six protons. Crystallographic studies showed that at mildly alkaline pH GadB is inactive because all active sites are locked by the C termini and that the 340 nm absorbance is an aldamine formed by the pyridoxal 5′-phosphate-Lys276 Schiff base with the distal nitrogen of His465, the penultimate residue in the GadB sequence. Herein we show that His465 has a massive influence on the equilibrium between active and inactive forms, the former being favored when this residue is absent. His465 contributes with n ≈ 2.5 to the overall cooperativity of the system. The residual cooperativity (n ≈ 3) is associated with the conformational changes still occurring at the N-terminal ends regardless of the mutation. His465, dispensable for the cooperativity that affects enzyme activity, is essential to include the conformational change of the N termini into the cooperativity of the whole system. In the absence of His465, a 330-nm absorbing species appears, with fluorescence emission spectra more complex than model compounds and consisting of two maxima at 390 and 510 nm. Because His465 mutants are active at pH well above 5.7, they appear to be suitable for biotechnological applications.  相似文献   

2.
For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate‐dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP‐dependent enzyme which performs a proton‐consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein/γ‐aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH‐dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non‐pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co‐regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA‐enriched foods possess health‐promoting properties.  相似文献   

3.
Bacterial glutamate decarboxylase (GAD) converts glutamate (Glu) into γ-aminobutyric acid (GABA) at acidic conditions. Since the reaction consumes a proton per GABA synthesis, cells use this reaction to survive in the acidic environments. Characteristically, the enzyme displays a sigmoidal decrease in its activity as pH rises becoming completely inactive at or above pH 6. This cooperative activity loss is accompanied by several distinct structural changes. Previously, by examining structures at acidic and neutral pH, two key regions had been chosen and mutated to break the cooperativity; Glu89 and C-terminal 15 residues. In this study, we included Asp86 in candidate key residues for mutation to break the cooperativity of GAD. We devised a selection strategy according to which only Escherichia coli cells expressing a variant GAD that was active at neutral pH could survive. In this scheme, an alanine (Ala) auxotroph was rescued by the intracellular synthesis of GABA that was subsequently converted into Ala by heterologously expressed GABA-pyruvate transaminase. New GAD variants were readily selected using this strategy and the most of them indeed had a mutation at residue 86. The results suggest that the role of Asp86 in the wild-type enzyme might be the same as Glu89; to make GAD keep its activity only at acidic environments. Characterization of representative variants are also presented.  相似文献   

4.
L-Glutamate decarboxylase, an enzyme under the control of the asexual developmental cycle of Neurospora crassa, was purified to homogeneity from conidia. The purification procedure included ammonium sulfate fractionation and DEAE-Sephadex and cellulose phosphate column chromatography. The final preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gels with a molecular weight of 33,200 +/- 200. A single band coincident with enzyme activity was found on native 7.5% polyacrylamide gels. The molecular weight of glutamate decarboxylase was 30,500 as determined by gel permeation column chromatography at pH 6.0. The enzyme had an acidic pH optimum and showed hyperbolic kinetics at pH 5.5 with a Km for glutamic acid of 2.2 mM and a Km for pyridoxal-5'-phosphate of 0.04 microM.  相似文献   

5.
1. A seven-step procedure for preparing highly purified glutamate decarboxylase from Clostridium perfringens is described. 2. The homogeneity of the pure enzyme was established by sucrose-density-gradient centrifugation and starch-gel electrophoresis. 3. The isoelectric point of the pure enzyme is about pH4.5 and the molecular weight is 290000. 4. The pH optimum for activity is 4.7. The pure enzyme is specific for l-glutamate; beta-hydroxyglutamate is decarboxylated at a lower rate. 5. Evidence is presented that each mol of enzyme contains 2mol of firmly bound pyridoxal 5-phosphate. 6. Resolution does not occur at acid pH; by dilution with neutral or alkaline buffers the enzyme is inactivated and the coenzyme is released. 7. Reconstitution of active enzyme was obtained by protecting the apoenzyme with thiol compounds.  相似文献   

6.
A glutamate-dependent acid resistance gene in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
Stationary-phase cultures of Escherichia coli can survive several hours or exposure to extreme acid (pH 2 to 3), a level well below the pH range for growth (pH 4.5 to 9). To identify the genes needed for survival in extreme acid, a microliter screening procedure was devised. Colonies from a Tn10 transposon pool in E. coli MC4100 were inoculated into buffered Luria broth, pH 7.0, in microtiter wells, grown overnight, and then diluted in Luria broth, pH 2.5, at 37 degrees C for 2 h. From 3,000 isolates screened, 3 Tet(r) strains were identified as extremely acid sensitive (<0.1% survival at pH 2.5 for 2 h). Flanking sequences of the Tn10 inserts were amplified by inverse PCR. The sequences encoded a hydrophobic partial peptide of 88 residues. A random-primer-generated probe hybridized to Kohara clones 279 and 280 at 32 min (33.7 min on the revised genomic map EcoMap7) near gadB (encoding glutamate decarboxylase). The gene was designated xasA for extreme acid sensitive. xasA::Tn10 strains grown at pH 7 to 8 showed 100-fold-less survival in acid than the parent strain. Growth in mild acid (pH 5 to 6) restored acid resistance; anaerobiosis was not required, as it is for acid resistance in rpoS strains. xasA::Tn10 eliminated enhancement of acid resistance by glutamic acid. xasA was found to be a homolog of gadC recently sequenced in Shigella flexneri, in which it appears to encode a permease for the decarboxylated product of GadB. These results suggest that GadC (XasA) participates in a glutamate decarboxylase alkalinization cycle to protect E. coli from cytoplasmic acidification. The role of the glutamate cycle is particularly important for cultures grown at neutral pH before exposure to extreme acid.  相似文献   

7.
Glutamate decarboxylase is a pyridoxal 5'-phosphate-dependent enzyme responsible for the irreversible alpha-decarboxylation of glutamate to yield 4-aminobutyrate. In Escherichia coli, as well as in other pathogenic and nonpathogenic enteric bacteria, this enzyme is a structural component of the glutamate-based acid resistance system responsible for cell survival in extremely acidic conditions (pH < 2.5). The contribution of the active-site lysine residue (Lys276) to the catalytic mechanism of E. coli glutamate decarboxylase has been determined. Mutation of Lys276 into alanine or histidine causes alterations in the conformational properties of the protein, which becomes less flexible and more stable. The purified mutants contain very little (K276A) or no (K276H) cofactor at all. However, apoenzyme preparations can be reconstituted with a full complement of coenzyme, which binds tightly but slowly. The observed spectral changes suggest that the cofactor is present at the active site in its hydrated form. Binding of glutamate, as detected by external aldimine formation, occurs at a very slow rate, 400-fold less than that of the reaction between glutamate and pyridoxal 5'-phosphate in solution. Both Lys276 mutants are unable to decarboxylate the substrate, thus preventing detailed investigation of the role of this residue on the catalytic mechanism. Several lines of evidence show that mutation of Lys276 makes the protein less flexible and its active site less accessible to substrate and cofactor.  相似文献   

8.
Enzymatic production of D-Glu was investigated by the succesive reactions of a glutamate racemase (EC 5.1.1.3) and a glutamate decarboxylase (EC 4.1.1.15) on L-Glu.Lactobacillus brevis ATCC8287 was chosen as a source of glutamate racemase. This strain produced a glutamate decarboxylase simultaneously. The glutamate racemase activity in the cell free extracts was 0.035 units/mg protein. The enzyme kept its activity even at 500 Mm of L-Glu (74g/liter). The optimum pHs of the racemase and the decarboxylase were at around 8.5 and below 4.0, respectively. Both enzymes had no activity at the optimum pH for the other enzyme. L-Glu was racemized first by the glutamate racemase at pH 8.5, then the pH was shifted to 4.0 at which L-Glu was decarboxylated by the glutamate decarboxylase. Starting from 100 g/liter of L-Glu, 50 g/liter of D-Glu was produced and no L-Glu remained in the reaction mixture.  相似文献   

9.
The Escherichia coli RNase E is an essential endoribonuclease involved in processing and/or degradation of rRNAs, tRNAs, and non-coding small RNAs as well as many mRNAs. It is known that RNase E activity is somehow regulated by an RNA-binding protein Hfq, at least in some cases. We searched for proteins that showed changes in expression in both hfq::cat and rne-1 mutant cells as compared with the wild type, and found that a protein band of 49-kDa decreased in these mutant cells at 42 degrees C, the restrictive temperature for rne-1. N-terminal amino acid sequencing identified it as a mixture of GadA and GadB, two isozymes of glutamate decarboxylase involved in glutamate-dependent acid resistance. The rne-1 mutant as well as the hfq mutant showed decreased survival under acidic conditions (pH 2.5). Hfq is known to regulate the expression of GadA/B in RpoS- and GadY small RNA-dependent ways. We examined the expression of these two regulators in rne-1 mutant cells. In the mutant cells, the induction of GadY was defective at 42 degrees C, but the expression of RpoS was normal. These results indicate that RNase E is required for induction of the glutamate-dependent acid resistance system in a RpoS-independent manner.  相似文献   

10.
Escherichia coli prefers growth in neutral pH environments but can withstand extremely acidic conditions (pH 2) for long periods. Of the four E. coli systems that contribute to acid resistance, one, the glutamate-dependent system, is remarkable in its efficacy and regulatory complexity. The resistance mechanism involves the intracellular consumption of protons by the glutamate decarboxylase isozymes GadA and GadB. The antiporter GadC then exports the product, gamma-aminobutyric acid, in exchange for fresh glutamate. A microarray study using overexpressed regulators uncovered evgAS and ydeO as potential regulators of gadE, now known to encode the essential activator of the gadA and gadBC genes. Examination of evgA and ydeO under normal expression conditions revealed that their products do activate gadE expression but only under specific conditions. They were important during exponential growth in acidified minimal medium containing glucose but were unnecessary for gadE expression in stationary-phase cells grown in complex medium. The response regulator EvgA activates gadE directly and indirectly via induction of the AraC-like regulator ydeO. Evidence obtained using gadE-lacZ operon fusions also revealed that GadE was autoinduced. Electrophoretic mobility shift assays indicated that EvgA, YdeO, and GadE bind to different regions upstream of gadE, indicating they all act directly at the gadE promoter. Since GadE controls the expression of numerous genes besides gadA and gadBC, the relevance of these regulatory circuits extends beyond acid resistance.  相似文献   

11.
We have used a variety of methods, including lactoperoxidase-catalyzed iodination, proteolysis, and photolabel incorporation, to determine whether exposure to the acidic pH encountered during receptor-mediated endocytosis causes observable conformational changes in receptor proteins. Two receptor systems were chosen for this study: the asialoglycoprotein receptor and the epidermal growth factor (EGF) receptor. The purified asialoglycoprotein receptor protein was reconstituted into lipid membranes by spontaneous incorporation into phosphatidylcholine liposomes with the binding site facing outward. The EGF receptor was studied in living A-431 cells and was identified by immunoprecipitation using monoclonal antibodies. Lactoperoxidase-catalyzed iodination of both receptor systems, carried out with the external pH equal to 7.4 or 5.6, showed that the extent of receptor protein iodination was less at the lower pH even though lactoperoxidase has an acidic pH optimum. Using the nonspecific hydrophilic photolabeling agent [35S]N-(4-azido-3-nitrophenyl)-2-aminoethylsulfonic acid-taurine, we observed less incorporation into both the asialoglycoprotein receptor in liposomes and the EGF-receptor in A-431 cells when the external pH was reduced to 5.6. Also, using the enzyme papain, we have found that both receptors become resistant to proteolysis when the external pH is lowered from 7.0 to 5.6. These results suggest a conformational change in both of these receptors in which they become less exposed to the external aqueous environment at low pH. Such a conformational change may be responsible for the pH dependence of binding for both of these ligands. Also, this conformational change may serve to protect receptors from enzymatic degradation within endocytic or lysosomal compartments.  相似文献   

12.
Since neural epidermal growth factor-like-like (NELL) 2 was identified as a novel ligand for the roundabout (Robo) 3 receptor, research on NELL–Robo signaling has become increasingly important. We have previously reported that Robo2 can bind to NELL1/2 in acidic conditions but not at neutral pH. The NELL1/2-binding site that is occluded in neutral conditions is thought to be exposed by a conformational change of the Robo2 ectodomain upon exposure to acidic pH; however, the underlying structural mechanisms are not well understood. Here, we investigated the interaction between the immunoglobulin-like domains and fibronectin type III domains that form hairpin-like structure of the Robo2 ectodomain, and demonstrated that acidic pH attenuates the interaction between them. Alternative splicing isoforms of Robo2, which affect the conformation of the hairpin-like structure, were found to have distinct NELL1/2-binding affinities. We developed Förster resonance energy transfer-based indicators for monitoring conformational change of the Robo2 ectodomain by individually inserting donor and acceptor fluorescent proteins at its ends. These experiments revealed that the ends of the Robo2 ectodomain are close to each other in acidic conditions. By combining these findings with the results of size exclusion chromatography analysis, we suggest that, in acidic conditions, the Robo2 ectodomain has a compact conformation with a loose hairpin-like structure. These results may help elucidate the signaling mechanisms resulting from the interaction between Robo2 and NELL1/2 in acidic conditions.  相似文献   

13.
本文研究了用海藻酸钙包埋法制备含谷氨酸脱羧酶固定化细胞的方法以及研究了制备的条件和影响其制备的因素。该法具有包埋细胞活力回收高,方法简便等优点。比较研究了固定化细胞和自然细胞谷氨酸脱羧酶的一些生物化学性质。其中固定化细胞最适pH和pH稳定性增加,最适温度及热稳定性下降;表观米氏常数增大;二价金属离子Zn~(++)、Cu~(++)、Mg~(++)、Fe~(++),Sr~(++)程度不同的抑制酶活性,Ca~(++)激活固定化细胞酶活性,EDTA无抑制作用。对固定化细胞和自然细胞酶活力活化的研究中发现这两种细胞经蒸馏水保温处理后酶活性都上升,且自然细胞酶活的上升较固定化细胞大;而用底物溶液处理后,自然细胞无变化,固定化细胞酶活下降。  相似文献   

14.
The inactivation kinetics of penicillin acylase from Escherichia coli have been investigated over a wide pH range at 25 and 50 degrees C. The enzyme was very stable in neutral solutions and quickly lost its catalytic activity in acidic and alkaline solutions. In all cases, the inactivation proceeded according to first order reaction kinetics. Analysis of the pH dependence of enzyme stability provides evidence that stable penicillin acylase conformation is maintained by salt bridges. Destruction of the salt bridges due to protonation/deprotonation of the amino acid residues forming these ion pairs causes inactivation by formation of the unstable "acidic" EH(4)(3+), EH(3)(2+), EH(2)(+) and "alkaline" E(-) enzyme forms. At temperatures above 35 degrees C penicillin acylase apparently undergoes a conformational change that is accompanied by destruction of one of these salt bridges and change in the catalytic properties.  相似文献   

15.
Considering the electrostatic potential of active site, four mutants of thermolysin (EC 3.4.24.4) are designed in an attempt to change the optimum pH of the hydrolytic activity toward acidic regions. On the basis of the numerical calculation of the electrostatic potential in the thermolysin molecule, Asp213 is targeted to be replaced by a basic residue, His, Lys, Arg or a neutral one, Asn. The mutant enzymes are produced inBacillus subtilis as a host using the method of site-directed mutagenesis and their optimum pH values for hydrolyzing a synthetic substrate furylacryloyl-Gly-l-Leu-NH2 are found to be lowered by 0.2–0.4 pH units with reference to the wild type enzyme. The pl shifts of the mutants are evaluated. Neither optimum pH nor pl shift can be explained by the contribution of the pK change only at the mutation site. We find a clear negative correlation between the activities at pH 7.0 and the pI values among the four mutants and wild-type enzyme. It suggests that the contribution of pK shift of other residues must be taken into account in order to explain the activity change. Little change of thermal stability is observed among the mutants and wild type enzymes.  相似文献   

16.
17.
Porcine heart mitochondrial H+-ATPase was reconstituted by cholate dialysis method in liposomes containing neutral (PC, PE), acidic (PG, PI, PA, PS, DPG) or neutral and acidic phospholipids. The Mg2+ effect on the ATPase activity and its sensitivity to oligomycin, ATP-induced delta psi and delta pH formation was observed for the proteoliposomes containing acidic but not neutral phospholipids. Maleimide spin labels with varying arm lengths or bromoacetamide spin probe were used to monitor the conformational difference of H+-ATPase in the Mg2+-containing and Mg2+-'free' samples. A difference in W/S ratio (weakly immobilized/strongly immobilized component in the ESR spectra) could be detected for the F0.F1-containing and F1-depleted, (F0)-containing proteoliposomes, suggesting conformational difference in the F0-F1 complex and F0 portion induced by the Mg2+ effect. A conformational change of the beta-subunits in the F1 portion was also deduced from the ATP-induced fluorescence quenching of aurovertin-complex for Mg2+-containing samples. The results obtained are in favor of our previous assumption that Mg2+ may play its role by altering the physical state of the lipid bilayer, which would induce a conformational change in F0 (buried in the lipid core), which in turn is transmitted to the catalytic F1, resulting in a higher enzyme activity.  相似文献   

18.
Gamma-aminobutyrate: defense against invertebrate pests?   总被引:1,自引:0,他引:1  
Gamma-aminobutyrate (GABA) is a ubiquitous four-carbon, non-protein amino acid. In plants, stress-induced GABA accumulation is well documented. However, the role(s) of GABA accumulation is contentious. In this Opinion article, we argue that wounding due to herbivory and crawling by insect larvae causes rapid GABA accumulation via the disruption of cellular compartmentation and the release of the acidic vacuolar contents to the cytosol. The activity of glutamate decarboxylase, the cytosolic enzyme responsible for GABA synthesis, has an acidic pH optimum. Subsequent GABA ingestion has a plant defense function by directly acting on GABA-regulated invertebrate neuromuscular junctions. Plants with an enhanced GABA-producing capacity reduce herbivory by invertebrate pests. These findings suggest that GABA accumulation is a rapidly deployed, local resistance mechanism that constitutes a first line of defense in deterring herbivory.  相似文献   

19.
The glutamate decarboxylase (GAD) system is critical to the survival of Listeria monocytogenes LO28 at low-pH stress (相似文献   

20.
Histidine decarboxylase (HDC) from Lactobacillus 30a converts histidine to histamine, a process that enables the bacteria to maintain the optimum pH range for cell growth. HDC is regulated by pH; it is active at low pH and inactive at neutral to alkaline pH. The X-ray structure of HDC at pH 8 revealed that a helix was disordered, resulting in the disruption of the substrate-binding site. The HDC trimer has also been shown to exhibit cooperative kinetics at neutral pH, that is, histidine can trigger a T-state to R-state transition. The D53,54N mutant of HDC has an elevated Km, even at low pH, indicating that the enzyme assumes the low activity T-state. We have solved the structures of the D53,54N mutant at low pH, with and without the substrate analog histidine methyl ester (HME) bound. Structural analysis shows that the apo-D53,54N mutant is in the inactive or T-state and that binding of the substrate analog induces the enzyme to adopt the active or R-state. A mechanism for the cooperative transition is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号