首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glucose isomerase (D -xylose ketol-isomerase EC 5.3.1.5) from Bacillus Coagulans was partially purified and immobilized by adsorption to anion exchangers. The highest activities were obtained when the enzyme was adsorbed to DEAE-cellulose. On immobilization to DEAE-cellulose the measured optimum pH value for enzyme activity shifted from 7.2 to 6.8. There was no appreciable difference between the heat stabilities of soluble and immobilized enzyme. The Km app values for the immobilized enzyme were found to be 0.25M in the presence of 0.01M Mg2+ and 0.19M with 0.005M Mg2+, while those enzyme were 0.11 and 0.17M, re spectively. Under conditions of contimuous of D -glucose, a decrease of activity with time was observed, but this decrease was less at a low Mg2+ concentration and was affected by column geometry. There were no appreciable diffusional limitation effects in packed-bed columns.  相似文献   

2.
Summary This paper describes a simple method for the immobilization of cells containing glucose isomerase enzyme activity, by using an epoxypolyamine crosslinking reagent. One kg of immobilized preparation could convert 5,700 kg of glucose to glucose-fructose syrups; the conversion was 42%.  相似文献   

3.
4.
5.
An original method of immobilization of nongrowing microorganism cells on xerogel of silicon dioxide containing insoluble hydroxyl compounds of cobalt(III) has been developed. A recombinant strain producing glucose isomerase has been constructed on the basis of Escherichia coli with the use of a gene of Arthrobacter nicotianae. It was revealed that glucose isomerase activity and stability of biocatalysts prepared on the basis of the recombinant E. coli strain was 3-5 times greater compared with the biocatalysts prepared with the use of the donor strain A. nicotianae. Under conditions of continuous hydrolysis of 3 M fructose at 62-65 degrees C in a fixed bed reactor, time of half-inactivation of the biocatalysts prepared from the recombinant strain and A. nicotianae was -60 and -25 days, respectively.  相似文献   

6.
Using commercial immobilized glucose isomerase (SWETASE(R), Nagase Co.), the effect of substrate protection on enzyme deactivation has been studied in a batch manner. The data analysis was carried out based on Briggs-Haldane kinetics in which enzyme deactivation accompanying the protection of substrates was also considered. The protection factor was proposed to elucidate the dependence of the degree of substrate protection. The existence of the protection of glucose isomerase by the substrates has been verified experimentally. Also, the enzyme-substrate complex deactivates with a decay constant which is one-half that of the free enzyme. Theoretical analysis of enzyme deactivation with substrate protection offers an effective understanding which is essential for enzyme replacement and process optimization.  相似文献   

7.
Summary It is shown that the enzyme glucose isomerase may be produced effectively by suitable continuous culture techniques using species of Arthrobacter and Mycobacterium. Carbon-limited growth conditions gave better carbon conversion efficiencies and higher specific enzyme activities than batch or nitrogen-limited conditions.This work was completed whilst the author was a member of the staff of I.C.I. Agricultural Division, Billingham, Teesside. Its contents are the subject of British Patent 1 492 258.  相似文献   

8.
9.
Irreversible thermoinactivation of immobilized glucose isomerase from Streptomyces olivochromogenes has been mechanistically investigated at the pH-optimum of enzymatic activity (pH 8.0). Ligands (high fructose corn syrup and the competitive inhibitor xylitol) greatly stabilize the immobilized enzyme at high temperatures. At 90 degrees C in the presence of 2M xylitol, irreversible inactivation of immobilized glucose isomerase is caused by deamidation of its asparagine/glutamine residues. On the basis of the data obtained, it appears that the time-dependent decay of glucose isomerase activity in industrial bioreactors is brought about by oxidation of the enzyme's cysteine residue and/or heat-induced deleterious reactions with high fructose corn syrup or its impurities.  相似文献   

10.
Summary A relatively simple method for obtaining an electrophoretically homogeneous preparation of glucose isomerase from Streptomyces nigrificans is described. Extract of disintegrated microbial cells was first heated at 60°C in the presence of Co and Mg ions. Centrifugation and ultrafiltration were followed by ion exchange chromatography on DEAE-cellulose. The fraction with glucose isomerase activity proved to contain no proteins other than the isolated enzyme.  相似文献   

11.
12.
Whole-cell glucose isomerase from a Streptomyces spp. was immobilized by entrapment in gelatin matrices crosslinked with glutaraldehyde. The resultant immobilized enzyme preparation had up to 40% recovery yield of the activity and showed relatively long stabilities during storage and the isomerizing reaction. The storage half-life of the preparation was 19 months at 5°C and the half-life of the enzyme during operation was 260 days in the presence of 1 mM Co2+ and 80 days in the absence of the metal ion. Optimum pH and temperature were 7.5 and 70–75°C, respectively. The Km values for glucose and fructose were 0.29 and 0.46 m, respectively, with a maximum theoretical conversion yield of 56%. The simulation results based on the reversible one-substrate enzyme kinetic model agreed well with the experimental data obtained from a batch reactor. The continuous operation of packed bed reactors demonstrated that some effects of the external film diffusion resistance were apparent at low flow rates of the substrate feed solution, whereas the internal pore diffusion resistance was negligible up to the pellet size used in this work.  相似文献   

13.
14.
Xylitol is specifically bound by active, cross-linked glucose isomerase crystals (CLGI). CLGI can be used to purify xylitol or concentrate it from dilute and impure solutions. Bound xylitol can be eluted from CLGI by Ca2 and the material reactivated by Mg2. The binding capacity is 1 mg xylitol per 525 mg CLGI which equals one molecule per active center. CLGI can further be used to purify xylitol and sorbitol from impure mixtures of arabinitol, mannitol, ribitol and monosaccharides. © Rapid Science Ltd. 1998  相似文献   

15.
Glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) was covalently coupled to silica-based supports containing aldehyde functional groups. The activity of the immobilized enzyme was about 1000 U/g support. The optimum pH of the catalytic activity was 5.5 for the soluble enzyme and 6.0 for the immobilized enzyme. With glucose as a substrate the Km value of the immobilized enzyme was higher than in case of the soluble enzyme. The immobilized enzyme was found to be more thermostable than the soluble one. The immobilization did not affect the stability of glucose oxidase against the denaturing effect of urea.  相似文献   

16.
The preparation of a water-insoluble derivative of glucose oxidase by covalent coupling to nickel on silica alumina is described. The catalyst has superior physical characteristics to conventional immobilized enzymes; although its activity and stability are now comparable to conventional catalysts, potential for significant further improvements has been demonstrated.  相似文献   

17.
Extraction of glucose isomerase from Streptomyces flavogriseus.   总被引:1,自引:1,他引:0       下载免费PDF全文
Cationic detergent (cetyltrimethylammonium bromide or cetylpyridinium chloride) treatment extracted almost the same amount of glucose isomerase from cells of Streptomyces flavogriseus as mechanical disruption (sonic oscillation or abrasive grinding). The specific activity of the enzyme extracted with cationic detergents was approximately 20% higher than that liberated by mechanical disruption.  相似文献   

18.
Molecular and industrial aspects of glucose isomerase.   总被引:11,自引:0,他引:11       下载免费PDF全文
Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.  相似文献   

19.
Summary The glucose isomerase activity ofStreptomyces haeochromogenes strains 1 and 2 varies considerably with the assay conditions (pH, glucose concentration,etc.). Nine other species of streptomyces were tested under conditions optimal forS.phaeochromogenes 2. The highest enzyme activity was found inS.nigrificans 3014.  相似文献   

20.
Summary Growth and glucose isomerase biosynthesis in Streptomyces bambergiensis ATCC 13879 have been studied under different conditions. Some data concerning correlation between cultivation conditions and elemental analysis of the cells are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号