首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The human polynucleotide cytidine deaminases APOBEC3G (hA3G) and APOBEC3F (hA3F) are antiviral restriction factors capable of inducing extensive plus-strand guanine-to-adenine (G-to-A) hypermutation in a variety of retroviruses and retroelements, including human immunodeficiency virus type 1 (HIV-1). They differ in target specificity, favoring plus-strand 5'GG and 5'GA dinucleotide motifs, respectively. To characterize their mutational preferences in detail, we analyzed single-copy, near-full-length HIV-1 proviruses which had been hypermutated in vitro by hA3G or hA3F. hA3-induced G-to-A mutation rates were significantly influenced by the wider sequence context of the target G. Moreover, hA3G, and to a lesser extent hA3F, displayed clear tetranucleotide preference hierarchies, irrespective of the genomic region examined and overall hypermutation rate. We similarly analyzed patient-derived hypermutated HIV-1 genomes using a new method for estimating reference sequences. The majority of these, regardless of subtype, carried signatures of hypermutation that strongly correlated with those induced in vitro by hA3G. Analysis of genome-wide hA3-induced mutational profiles confirmed that hypermutation levels were reduced downstream of the polypurine tracts. Additionally, while hA3G mutations were found throughout the genome, hA3F often intensely mutated shorter regions, the locations of which varied between proviruses. We extended our analysis to human endogenous retroviruses (HERVs) from the HERV-K(HML2) family, finding two elements that carried clear footprints of hA3G activity. This constitutes the most direct evidence to date for hA3G activity in the context of natural HERV infections, demonstrating the involvement of this restriction factor in defense against retroviral attacks over millions of years of human evolution.  相似文献   

5.
Human endogenous retroviruses (HERVs) are the remnants of ancient germ cell infection by exogenous retroviruses and occupy up to 8% of the human genome. It has been suggested that HERV sequences have contributed to primate evolution by regulating the expression of cellular genes and mediating chromosome rearrangements. After integration 28 million years ago, members of the HERV-K (HML-2) family have continued to amplify and recombine. To investigate the utility of HML-2 polymorphisms as markers for the study of more recent human evolution, we compiled a list of the structure and integration sites of sequences that are unique to humans and screened each insertion for polymorphism within the human genome databases. Of the total of 74 HML-2 sequences, 18 corresponded to complete or near-complete proviruses, 49 were solitary long terminal repeats (LTRs), 6 were incomplete LTRs, and 1 was a SVA retrotransposon. A number of different allelic configurations were identified including the alternation of a provirus and solitary LTR. We developed polymerase chain reaction-based assays for seven HML-2 loci and screened 109 human DNA samples from Africa, Europe, Asia, and Southeast Asia. Our results indicate that the diversity of HML-2 elements is higher in African than non-African populations, with population differentiation values ranging from 0.6 to 9.8%. These findings denote a recent expansion from Africa. We compare the phylogenetic relationships of HML-2 sequences that are unique to humans and consider whether these elements have played a role in the remodeling of the hominid genome.Reviewing Editor: Dr. Wen-Hsiung Li  相似文献   

6.
Human endogenous retroviruses (HERVs), which constitute a significant part of the human genome, might have a serious impact on primate evolution. Over a hundred insertions of HERV-K(HML-2) family members distinguish the human genome from other primate genomes. However, only three cases of insertion polymorphisms have been reported so far, all for endogenous HERV-K proviruses. This suggests that some retroviral integrations occurred rather recently in human genome evolution. In this report, we describe a very rare case of true insertion polymorphism of a solitary HERV-K LTR in the human genome. Distribution of the LTR-containing allele was tested in 5 Africans and 83 individuals from three Russian populations. The allele frequency appeared to be relatively high in populations of both European and Asian origin. The detected polymorphic LTR could be a useful molecular genetic marker of the corresponding genomic region.  相似文献   

7.
8.
Mayer J  Meese EU 《Genomics》2002,80(3):331-343
A substantial amount of the human genome is composed of human endogenous retroviruses (HERVs). Manifold HERV families have been identified, among them several so-called HERV-K(HML) families. Although the HERV-K(HML-2) family has been studied in detail, other HERV-K families are not as well characterized. We describe here the HERV-K HML-3 family in more detail. We estimate that there are about 140 proviral loci or remains of such per haploid genome. Most loci are severely mutated. Proviruses displaying larger deletions in gag and pol are common. A multiple alignment of 73 HERV-K(HML-3) sequences displays several potentially important differences compared with the HERVK9I sequence in Repbase. A consensus sequence with open reading frames for all retroviral genes was generated, for which intact dUTPase motifs and env gene variants with different coding capacities are observed. Phylogenetic analysis shows near-monophyly with distinction of two closely related subgroups. Proviruses formed about 36 million years ago. However, no continuous activity through primate evolution is indicated.  相似文献   

9.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5α and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a ‘fossil record’ of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5α proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species–dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

10.
The human genome harbors numerous distinct families of so-called human endogenous retroviruses (HERV) which are remnants of exogenous retroviruses that entered the germ line millions of years ago. We describe here the hitherto little-characterized betaretrovirus HERV-K(HML-5) family (named HERVK22 in Repbase) in greater detail. Out of 139 proviruses, only a few loci represent full-length proviruses, and many lack gag protease and/or env gene regions. We generated a consensus sequence from multiple alignment of 62 HML-5 loci that displays open reading frames for the four major retroviral proteins. Four HML-5 long terminal repeat (LTR) subfamilies were identified that are associated with monophyletic proviral bodies, implying different evolution of HML-5 LTRs and genes. Sequence analysis indicated that the proviruses formed approximately 55 million years ago. Accordingly, HML-5 proviral sequences were detected in Old World and New World primates but not in prosimians. No recent activity is associated with this HERV family. We also conclude that the HML-5 consensus sequence primer binding site is identical to methionine tRNA. Therefore, the family should be designated HERV-M. Our study provides important insights into the structure and evolution of the oldest betaretrovirus in the primate genome known to date.  相似文献   

11.

Background

The human genome contains about 8% of endogenous retroviral sequences originated from germ cell infections by exogenous retroviruses during evolution. Most of those sequences are inactive because of accumulation of mutations but some of them are still capable to be transcribed and translated. The latter are insertionally polymorphic HERV-K113 and HERV-K115. It has been suggested that their presence and expression was connected with several human diseases. It is also believed that they could interfere with the replication cycle of exogenous retroviruses, including HIV.

Results

Prevalence of endogenous retroviral sequences HERV-K113 and HERV-K115 was determined in the Polish population. The frequencies were found as 11.8% for HERV-K113 and 7.92% for HERV-K115. To verify the hypothesis that the presence of these HERVs sequences could affect susceptibility to HIV infection, comparison of a control group (HIV-negative, not exposed to HIV; n = 303) with HIV-positive patients (n = 470) and exposed but uninfected (EU) individuals (n = 121) was performed. Prevalence of HERV-K113 and HERV-K115 in the EU group was 8.26% and 5.71%, respectively. In the HIV(+) group we detected HERV-K113 sequences in 12.98% of the individuals and HERV-K115 sequences in 7.23% of the individuals. There were no statistically significant differences between groups studied.

Conclusion

The frequency of HERV-K113 and HERV-K115 sequences in Poland were found to be higher than usually shown for European populations. No relation between presence of the HERVs and HIV infection was detected.  相似文献   

12.

Background

Integration of retroviral DNA into a germ cell may lead to a provirus that is transmitted vertically to that host's offspring as an endogenous retrovirus (ERV). In humans, ERVs (HERVs) comprise about 8% of the genome, the vast majority of which are truncated and/or highly mutated and no longer encode functional genes. The most recently active retroviruses that integrated into the human germ line are members of the Betaretrovirus-like HERV-K (HML-2) group, many of which contain intact open reading frames (ORFs) in some or all genes, sometimes encoding functional proteins that are expressed in various tissues. Interestingly, this expression is upregulated in many tumors ranging from breast and ovarian tissues to lymphomas and melanomas, as well as schizophrenia, rheumatoid arthritis, and other disorders.

Results

No study to date has characterized all HML-2 elements in the genome, an essential step towards determining a possible functional role of HML-2 expression in disease. We present here the most comprehensive and accurate catalog of all full-length and partial HML-2 proviruses, as well as solo LTR elements, within the published human genome to date. Furthermore, we provide evidence for preferential maintenance of proviruses and solo LTR elements on gene-rich chromosomes of the human genome and in proximity to gene regions.

Conclusions

Our analysis has found and corrected several errors in the annotation of HML-2 elements in the human genome, including mislabeling of a newly identified group called HML-11. HML-elements have been implicated in a wide array of diseases, and characterization of these elements will play a fundamental role to understand the relationship between endogenous retrovirus expression and disease.  相似文献   

13.
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.  相似文献   

14.
15.
Sequences homologous to the human endogenous retrovirus (HERV) family HERV-K(HML-2) are present in all Old World primate species. A previous study showed that a central region of the HERV-K(HML-2) gag genes in Hominoidea species displays a 96-bp deletion compared to the gag genes in lower Old World primates. The more ancient HERV-K(HML-2) sequences present in lower Old World primates were apparently not conserved during hominoid evolution, as opposed to the deletion variants. To further clarify the evolutionary origin of the HERV-K(HML-2) family, we screened GenBank with the 96-bp gag-sequence characteristic of lower Old World primates and identified, to date, 10 human sequence entries harboring either full-length or partially deleted proviral structures, probably representing remnants of a more ancient HERV-K(HML-2) variant. The high degree of mutations demonstrates the long-time presence of these HERV-K(OLD) proviruses in the genome. Nevertheless, they still belong to the HML-2 family as deduced from dot matrix and phylogenetic analyses. We estimate, based on the family ages of integrated Alu elements and on long terminal repeat (LTR) divergence data, that the average age of HERV-K(OLD) proviruses is ca. 28 million years, supporting an integration time before the evolutionary split of Hominoidea from lower Old World primates. Analysis of HERV-K(OLD) LTR sequences led to the distinction of two subgroups, both of which cluster with LTRs belonging to an evolutionarily older cluster. Taken together, our data give further insight into the evolutionary history of the HERV-K(HML-2) family during primate evolution.  相似文献   

16.
17.
18.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5alpha and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a 'fossil record' of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5alpha proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species-dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号