首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spleen cells from young, nonautoimmune strains of mice cultured with syngeneic E do not develop a significant anti-mouse E response in vitro, consistent with a state of self-tolerance to this Ag. In order to study the role of active suppression in regulating mouse RBC-(MRBC) specific cells in nonautoimmune cell populations, the effect of depleting T cell subsets on the generation of anti-MRBC autoantibodies by nonautoimmune spleen cells was determined. Spleen cells from young BALB/c and C57BL/6 mice were found to generate significant numbers of IgM and IgG anti-MRBC autoantibody-forming cells in culture with MRBC after depletion of Ly-2+ cells by anti-Ly-2 and C treatment. The response which develops is Ag dependent, Ag specific, and dependent upon L3T4+ Th. The magnitude and isotype of this response is similar to the anti-MRBC response generated by spleen cells from 12-mo-old, autoimmune NZB mice and young NZB mice also treated to remove Ly-2+ cells. Addition of isolated Ly-2+ T cells, but not L3T4+ or Ly-2- T cells, to spleen cells depleted of Ly-2+ cells restores apparently normal regulation of the anti-MRBC response in vitro. These data demonstrate that control of a specific autoantibody response to MRBC by nonautoimmune spleen cell populations requires active regulation by an Ly-2+ T cell subset.  相似文献   

2.
A new T cell molecule defined by the mAb 143-4-2 has been identified that is involved in T cell activation. The expression of the 143-4-2-defined epitope is linked to the previously characterized Ly-6 locus and restricted to bone marrow cells and to a subset of peripheral Lyt-2+ cells. In comparison to other anti-Ly-6.2 mAb, the 143-4-2 mAb appears to be directed at an allogeneic determinant of the Ly-6.2C molecule. The anti-Ly-6.2C antibody can promote the lysis of antigen-non-bearing target cells by alloreactive CTL clones, and in the presence of cofactors (PMA or IL 2) induces a subset of Lyt-2+ cells to proliferate, perhaps through an autocrine pathway. Although the antibody described has antigen-like effects as described for anti-TcR complex reagents, studies performed with a recently derived anti-murine T3 mAb suggest that the Ly-6.2C molecule is not associated on the cell surface with components of the TcR complex. Nevertheless, cell surface expression of the TcR complex is required for optimal triggering of T cells via the Ly-6.2C molecule. Because Ly-6.2C determinants are expressed in bone marrow and not in the thymus, the possibility is considered that expression of this molecule identifies a distinct subset of extrathymically derived T cells.  相似文献   

3.
Previous studies indicated that T cells are required for tolerance induction by hapten-modified syngeneic spleen cells (TNP-SC) in vivo. The role of T cells in the maintenance of this unresponsive state has been examined herein. By three criteria--limiting dilution precursor analysis, removal of T cells by anti-Thy-1 + C, and direct mixing experiments--we show that T cells are required for the continued suppression of the B cell response to the T-independent antigen, TNP-POL. Suppressor cells can also be induced by TNP-teratoma cells, which lack detectable H-2 antigens. Both anti-Ly-1 + C and anti-Ly-2 + C treatment reversed suppression induced by TNP-SC. These results demonstrate that normal B cell reactivity is present in the spleens of mice rendered tolerant by haptenated self, but that Ly-1,2,3 or Ly-1 + Ly-2,3 suppressor T cells prevent their responsiveness.  相似文献   

4.
Although abscesses are a major sequela of infection, little is known about which cellular events initiate and which prevent this pathologic response. These studies are the first to indicate a role for T cells in the important pathogenic process of abscess development and also in immunity to abscesses induced by Bacteroides fragilis. We have shown that T cells initiate the formation of abscesses in mice after i.p. challenge with B. fragilis. These T cells bear both Ly-1 and Ly-2 surface markers. Nude mice (which have been shown by others to have T cell or T cell precursors) are also able to form abscesses. Cyclophosphamide-treated mice (with depressed T cell function) were not capable of developing abscesses. Reconstitution with normal or nude mouse spleen cells restored this ability. However, reconstitution with anti-Thy-1.2-treated, anti-Ly-1, or anti-Ly-2-treated spleen cells (or a mixture of the two cell populations) failed to allow abscess formation after bacterial challenge. Immunity to abscesses caused by B. fragilis requires two T cells. The first Ly-1-2+ T cell has an IJ surface marker and has been shown to release a small m.w. soluble factor (ITF) that is antigen specific. Immunity to abscesses, however, depends on the interaction of ITF with a second Ly-1-2+ T cell, demonstrated in reconstitution experiments with nude mice. The data presented document a critical role for T cells in abscess induction and suggest the existence of a suppressor-like T cell circuit in immunity to abscesses.  相似文献   

5.
Ly-6A/E molecules were originally implicated in regulation of T cell activation because anti-Ly-6A/E mAb induce IL-2 production. More recently we have shown that anti-Ly-6A/E also inhibits IL-2 production induced by anti-CD3. In the present study we used mutant and transfected cell lines that varied in expression of Ly-6A/E or TCR-zeta to test whether the positive and negative modulations of IL-2 production by anti-Ly-6A/E occur by distinct mechanisms. Anti-Ly-6A/E inhibited anti-CD3-induced IL-2 production for Ly-6E.1-transfected EL4J cells, but did not affect IL-2 production of the parental Ly-6A/E-negative EL4J cells. These results indicate that TCR-mediated IL-2 production can occur in the absence of Ly-6A/E expression and establish that anti-Ly-6A/E-induced inhibition of IL-2 production was the result of antibody binding to Ly-6A/E. As expected, MA5.8 (zeta-negative) or CT108 (zeta-truncated) variants of the 2B4.11 T cell hybridoma did not produce IL-2 when stimulated with anti-Thy-1 or anti-Ly-6A/E mAb. In contrast, anti-Ly-6A/E inhibited anti-CD3-induced IL-2 production by MA5.8 and CT108. Furthermore, anti-Ly-6A/E-induced IL-2 production was restored for zeta-transfected MA5.8. Thus, although induction of IL-2 by anti-Ly-6A/E depends on zeta expression, inhibition of IL-2 by anti-Ly-6A/E occurs by a zeta-independent mechanism. Interestingly, anti-Ly-6A/E, but not anti-Thy-1, inhibited anti-CD3-induced IL-2 production by MA5.8 and Ly-6E.1-transfected EL4J. Therefore, inhibition of IL-2 production by anti-Ly-6A/E was not a general property of a mAb binding to a phosphatidylinositol-linked molecule, as has been suggested for induction of IL-2 production. Taken together these data suggest that the molecular mechanisms of induction and inhibition of IL-2 production by anti-Ly-6A/E are separable and expression of TCR-zeta is one variable that distinguishes these two pathways.  相似文献   

6.
BACKGROUND: The Ly-6 family has many members, including Ly-6C and Ly-6G. A previous study suggested that the anti-Ly-6G antibody, RB6-8C5, may react with Ly-6Chi murine bone marrow (BM) cells. This finding has been interpreted as cross-reactivity of RB6-8C5 with the Ly-6C antigen, and has been generalized to many hematopoietic cell types, using the terminology Ly-6G/C. The present study was undertaken to determine whether anti-Ly-6G antibodies truly cross-react with the Ly-6C antigen on multiple hematopoietic cell types. METHODS: Splenocytes, thymocytes, and BM cells obtained from Ly-6.1 and Ly-6.2 strains of mice were stained with a variety of antibodies to Ly-6C and Ly-6G. Flow cytometric analysis was performed on these populations. RESULTS: Evaluation of anti-Ly-6C and anti-Ly-6G staining showed only Ly-6C expression and no Ly-6G expression on subsets of splenic T and B cells and thymocytes from Ly-6.1 and Ly-6.2 mice. Bone marrow cells were identified that express both Ly-6G and Ly-6C; no Ly-6G+Ly-6C- populations were seen. CONCLUSIONS: Multiple Ly-6C+ hematopoietic cell populations were identified that do not stain with anti-Ly-6G antibodies. This calls into question the use of the Ly-6G/C nomenclature and suggests that epitopes recognized by anti-Ly-6G antibodies should simply be designated Ly-6G.  相似文献   

7.
Inhibition by anti-Ia sera of guinea pig T lymphocyte proliferation induced by allogeneic macrophages (MLR) and NaIO4 or neuraminidase-galactose oxidase-treated macrophages has been investigated in order to identify the target cell upon which the antisera act. Anti-2 and anti-13 alloantisera were found to inhibit both MLR and aldehydeinduced T cell reactivity when directed against the specificity of the stimulatory macrophage. Little or no inhibition was observed when these antisera were directed against the T lymphocyte specificity when cultures were harvested at the time of peak proliferation. In addition, anti-2 serum was found to inhibit macrophage-lymphocyte rosett formation at 20 hr between neuraminidase-galactose oxidase-treated strain 2 macrophages and strain 13 lymphocytes. These findings demonstrate that inhibition of T cell proliferation can be produced by anti-Ia sera directed against the macrophage and raise the possibility that Ir gene products may function in part at the level of the macrophage.  相似文献   

8.
Ly-6.2: A new lymphocyte specificity of peripheral T-cells   总被引:1,自引:1,他引:0  
A new cell-membrane alloantigen determining locus, Ly-6, has recently been described, and the single specificity Ly-6.2 has been defined by the serum (BALB/c× A)F1 anti-CXBD. Using both fluorescence and cytotoxicity, we found this specificity predominantly on peripheral (extrathymic) T cells, as tissues react thus: thymus, 0–5 percent; spleen, 25 percent; lymph nodes, 69 percent; bone marrow, 15 percent. These reactions agree with the proportion of (Thy+, Ig) cells present in these tissues. Cortisone-resistant thymus cells were positive. Absorption studies with thymus cells demonstrated the sparse or absent representation of Ly-6.2 on intrathymic T cells. Examination of spleen and lymph node cells from T cell-depleted C57BL/6 mice (after in vitro treatment with anti-Thy-1 serum or examination of tissues of C57BL/6-nu/nu mice) also showed a depletion of Ly-6.2+ cells. Conversely, removal of Ig+ B cells, which caused a relative increase in the number of T cells in the residual population, also increased the number of Ly-6.2+ cells. Additive effects of anti-Thy-1.2 and anti-Ly-6.2 could not be demonstrated, which suggests that the same population was Thy-1.2+, Ly-6.2+. However, additive effects could be shown with an anti-Ia serum and anti-Ly-6.2. The Ly-6.2 specificity is not found on red cells, liver, brain, or antibody-forming cells, but has been identified on a T-cell (but not B-cell) tumor and on kidney. Ly-6.2 can therefore be considered to be a marker for peripheral T cells, and it differs from the Thy-1 and the Ly-1,2,3, and 5 specificities in its relative absence from the thymus.  相似文献   

9.
The Ly-6 family of cell surface molecules has previously been shown to participate in T cell activation. We show that Ly-6A/E proteins also modulated the response of normal B lymphocytes in three separate in vitro assays. First, unfractionated or small resting B cells proliferated when cultured with IFN-gamma, IL-4, and an anti-Ly-6A/E mAb. Second, this anti-Ly-6A/E mAb restored B cell proliferation responses that were inhibited when coculturing the B cells in IFN-gamma, IL-4, and anti-IgM. Third, anti-Ly-6A/E specifically up-regulated the cell surface expression of its own Ag, and this response was dependent upon co-stimulation with IFN-gamma. Mixing of T and B cells in culture suggested that T cells did not contribute substantially to the B cell proliferative response. Moreover, up-regulation of Ly-6A/E was observed for one B cell lymphoma, WEHI-231. Therefore, it appeared that modulation of B cell function by anti-Ly-6A/E was due to a direct effect of the mAb binding to the B cells. Taken together, these data suggest Ly-6A/E proteins are functional on B cells and may play a regulatory role in B cell activation.  相似文献   

10.
We have described a trinitrophenyl (TNP)-specific inducer clone, clone Ly-1-T1, which responds to a variety of different stimuli, including a) soluble TNP-protein conjugates plus syngeneic (H-2d) spleen cells, b) TNP directly coupled to syngeneic or allogeneic spleen cells, and c) activated I-A identical B cells in the absence of nominal antigen. In the present study we used a panel of antibodies to investigate the recognition structures involved in the activation of clone Ly-1-T1 by these different stimuli. We show that allogeneic spleen cells must be conjugated by using relatively high concentrations of TNBS to be efficient stimulators of the clone. In contrast, syngeneic spleen cells conjugated by using a much wider range of concentrations will activate the clone. The response of the clone to TNP-coupled allogeneic spleen cells is inhibited by anti-L3T4 and anti-Ia antibodies. In contrast, stimulation of the clone with syngeneic spleen cells coupled by using the same concentrations of TNBS is not inhibited with either anti-Ia or anti-L3T4 antibody. The inhibition pattern observed with anti-Ia and anti-L3T4 antibodies was also determined by the nature of the accessory population used to present soluble TNP-protein conjugates. Anti-I-Ad antibodies blocked the activation of clone Ly-1-T1 by TNP-protein plus splenic adherent cells, indicating the involvement of polymorphic I-A determinants in this response. Anti-L3T4 antibody had little or no effect on this response, suggesting that a significant L3T4-Ia interaction is not required. Finally, the response of the clone to activated B cells in the presence or absence of TNP-protein is exquisitely sensitive to inhibition by anti-L3T4 as well as anti-I-A antibodies. The data suggest that the requirement for an L3T4-I interaction depends on the combination of antigen and accessory cell type used to stimulate the clone.  相似文献   

11.
The present study was aimed at gaining insight into means by which stimulation of mouse spleen cells with allogeneic normal cells in mixed leukocyte cultures (MLC) can result in the generation of effector cells cytotoxic for syngeneic tumor or transformed cells. Stimulation of lymphocytes from BALB/c or C3H mice for 5 days with cells from mice of every allogeneic strain tested, in medium containing mouse serum and lacking xenogeneic serum, resulted in the activation of effectors cytotoxic for syngeneic cells transformed spontaneously or by SV40, polyoma or adenovirus. In each experiment, all of the syngeneic transformed cell lines, as well as clones derived from these lines, were lysed to the highest degree by effectors obtained from the same culture, and therefore stimulated with cells from the same allogeneic strain. Although the particular allogeneic sensitizing strain that induced the highest cytolytic activity varied between experiments, effectors obtained from the culture with the highest cell recovery always exhibited the greatest cytotoxicity against all the syngeneic transformed cells and clones. Lysis was mediated predominantly by Ly-2+ effectors; total lytic units of cytotoxicity recovered after treatment with monoclonal anti-Ly-2 antibody and complement (C) were reduced by 85 to 90% compared to cells treated with C alone. Lysis of syngeneic tumor cells by the allosensitized effectors in cytotoxicity assays was not inhibited by the addition of unlabeled "blocking" lymphocytes from the allogeneic strain used for sensitization. In addition, it was found that lymphocytes cultured without stimulating cells for 5 days in medium supplemented with supernatants from secondary MLC that are known to contain high levels of lymphokines, mediated high levels of cytotoxicity on all the transformed cells tested, but lacked detectable cytotoxic activity for syngeneic or allogeneic Con A blasts. The MLC supernatant-activated effectors that lyse the transformed cells are phenotypically CTL, because treatment with anti-Ly-2 and C reduced lytic activity by approximately 75%. Taken together, these findings suggest that the generation in MLC of Ly-2+ effector cells cytotoxic for syngeneic transformed cell lines might not be due, in some cases, to lymphocyte responses to particular alloantigens on the stimulating cells that are cross-reactive with "alien" histocompatibility antigens on transformed cells, but rather is due to effector cell activation by lymphokines produced during allogeneic stimulation.  相似文献   

12.
Cytotoxic effector T cells specific for non-H-2 histocompatibility (H) antigens were examined for phenotypic expression of lymphocyte differentiation (Ly) antigens. Virtually all H-Y-specific cytotoxic effectors generated in mixed lymphocyte culture were Ly-1+2+ T cells. H-3-specific effectors comprised both Ly-1+2+ and Ly-1-2+ T cells. However, cytotoxic effectors specific for multiple non-H-2 H antigens were predominantly Ly-1-2+ T cells. The optimal generation of H-Y- and H-3-specific effectors required Ly-1+2+ T cells; optimal generation of multiple non-H-2 H antigen-specific effectors required an interaction between Ly-1+2- and Ly-1-2+ T cells. These observations suggest that the identity of the target H antigen in part determines the Ly type of responsive T cells. Our observations suggest that 2 alternative pathways of T cell response exist for non-H-2 H antigens. The first pathway involves an interaction between Ly-1+2- helper T cells and Ly-1-2+ cytotoxic effector precursors. The 2nd pathway simply involves the response of Ly-1+2+ T cells proliferating and generating H antigen-specific cytotoxic effectors.  相似文献   

13.
Ly-6 proteins appear to serve cell adhesion and cell signaling function, but the precise role of Ly-6A.2 in CD4+ T lymphocytes is still unclear. Overexpression of Ly-6A.2 in T lymphocytes has allowed us to analyze the influence of elevated Ly-6A.2 expression on T cell function. In this study we report reduced proliferation of CD4+ T cells overexpressing Ly-6A.2 in response to a peptide Ag. Moreover, the Ly-6A.2-overexpressing CD4+ cells generated elevated levels of IL-4, a key factor that propels the differentiation of naive CD4+ T cells into Th2 subset. The hyporesponsiveness of Ly-6A.2 transgenic CD4+ T cells is dependent on the interaction of Ly-6A.2 T cells with the APCs and can be reversed by blocking the interaction between Ly-6A.2 and a recently reported candidate ligand. Overexpression of Ly-6A.2 in CD4+ T cells reduced their Ca(2+) responses to TCR stimulation, therefore suggesting effects of Ly-6A.2 signaling on membrane proximal activation events. In contrast to the observed Ag-specific hyporesponsiveness, the Ly-6A.2 transgenic CD4+ T cells produced IL-4 independent of the interactions between Ly-6A.2 and the candidate Ly-6A.2 ligand. Our results suggest that 1) interaction of Ly-6A.2 with a candidate ligand regulates clonal expansion of CD4+ Th cells in response to an Ag (these results also provide further functional evidence for presence of Ly-6A.2 ligand on APC); and 2) Ly-6A.2 expression on CD4+ T cells promotes production of IL-4, a Th2 differentiation factor.  相似文献   

14.
Injection of CBA mice with Brucella abortus strain 19 leads to chronic infection during which both cell-mediated immunity (delayed hypersensitivity and macrophage activation) and antibody production occur. Protection was efficiently transferred to naive mice using spleen cells from mice infected 5 or 12 weeks earlier. Selective lysis in vitro of these cells by antibody to cell surface antigens showed that Thy-1+ Ly-1+2+ T lymphocytes were required for transfer. Treatment with anti-Ia serum neither suppressed nor enhanced adoptive transfer. Thus Ia+ B lymphocytes were not required, and Ia+ suppressor T cells were not active in the response. Three injections per week of anti-Ly-1 monoclonal antibody beginning 5 days before infection led to a 10-fold increase in bacterial numbers 25 days after infection when acquired immunity was well established in untreated mice. The delayed hypersensitivity response was unaffected. In addition cells from these in vivo treated mice were unable to transfer resistance. Beginning the treatment on the day of infection abolished the IgG antibody response without affecting bacterial numbers. The studies emphasize the unique role of Ly-1+2+ T cells in immunity to Brucella and indicate the usefulness of these techniques in dissecting out those components of the immune response which contribute to recovery from infection.  相似文献   

15.
Under appropriate conditions of immunization combined with irradiation, SJL/J mice show a high and persistent anti-DNP IgE antibody response. Spleen cells transferred from normal untreated SJL mice suppress this response. Elimination of Ly-1+ cells, but not of Ly-2+ cells, abolished the capacity of spleen cells to suppress the IgE response. Thus of the three T cell Ly subclasses presently identified, Ly-1, Ly-2,3, and Ly-1,2,3, the normal SJL spleen cell which suppresses the IgE response of irradiated-immunized SJL mice belongs to the Ly-1 set. It is not known whether this Ly-1 cell suppresses the IgE response directly or by helping another cell in the recipient. The carrier-specific helper cell activity for IgE and probably IgG1 antibody response belongs to Ly-1 subclass in the SJL strain also.  相似文献   

16.
Down-regulation of IL-2 production by activation of T cells through Ly-6A/E   总被引:4,自引:0,他引:4  
Ly-6A/E molecules are expressed on the surface of T cells and have been shown to function in activation by the capacity of anti-Ly-6A/E mAb to induce T cell hybridomas or normal T cells to produce IL-2. Recent evidence suggests that activation through Ly-6A/E may be linked to the TCR signaling pathway. To further investigate the relationship between Ly-6- and TCR-induced T cell activation, we have examined whether an anti-Ly-6A/E mAb (D7) modulates TCR signaling in vitro. We now report that mAb D7 specifically inhibited IL-2 production by T cells also activated through TCR. Such inhibition was noted for normal T cells stimulated by soluble anti-CD3 or alloantigen and for T hybridomas stimulated by soluble anti-CD3. The ability of D7 to inhibit IL-2 production by T hybridomas was dependent on the nature of the TCR activating signal because IL-2 production was not inhibited when T hybridomas were stimulated with Ag or immobilized anti-CD3. Inhibition of IL-2 production by D7 apparently required cross-linking of the mAb because D7 F(ab')2 fragments were not effective for inhibition of IL-2 production. Similar to its ability to enhance anti-Ly-6A/E-induced activation of T and B cells, IFN-gamma enhanced the D7-induced inhibition of IL-2 production by alloantigen-activated normal T cells. These data further support the notion that Ly-6 and TCR signaling pathways are interrelated.  相似文献   

17.
Ly-6A is a glycosyl-phosphatidylinositol (GPI)-anchored molecule that participates in murine T cell activation. Activation of T cell hybridomas with anti-Ly-6A monoclonal antibody (mAb) leads to production of interleukin-2 (IL-2), but also to a paradoxical growth inhibition, which was used to select for signaling mutants. Fifteen subclones derived from two independent mutageneses and anti-Ly-6A selection were characterized. Thirteen subclones responded poorly or not at all to soluble anti-Ly-6A mAb. Although the selective pressure was exerted through Ly-6A, only one mutant did not express the Ly-6A antigen. Interestingly, 10 of the 15 subclones expressed either nondetectable or a very low level of T cell receptor/CD3 complex (TCR/CD3). Preferential expansion of TCR/CD3 expression mutants following anti-Ly-6A selection further established functional linkage between Ly-6A and TCR/CD3 complex. The mechanism of the functional coupling was investigated by analyzing the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), one of the early events in T cell activation. We showed that PIP2 was not hydrolyzed in response to anti-Ly-6A in TCR/CD3-negative mutants. Aluminum fluoride, which activates G protein directly, did induce PIP2 hydrolysis in these cells. These data suggest that activation signals originated from Ly-6A must be transmitted first to TCR/CD3 complex, which then couples to the G protein/phospholipase C system. A similar requirement also applies to the Thy-1 protein and lectin receptors. Thus, the TCR/CD3 complex plays a central role in the integration and transmission of activation signals that originated from several T cell surface molecules.  相似文献   

18.
Pretreatment of responder spleen cells with anti-Ia plus complement led to an enhancement of cytotoxic responses to alloantigens as well as to TNP-modified self antigens. This observation confirms previous reports that cytotoxic T lymphocytes (CTL) and their precursors (CLP) are Ia?. Furthermore, it suggests that the CTL responses to alloantigens or TNP-modified self-antigens are regulated by an Ia+ suppressor cell. Absorption studies and studies with anti-Ia sera specific for either the entire I region or the I-E/C subregions suggest that the regulatory cell certainly expresses I-E/C-coded determinants although the possibility that it also expresses I-A/B/J-coded determinats cannot be ruled out. Cell-mixing studies suggest that the regulatory cell is Thy-1? and requires cell division before it can suppress. A clonal assay for CLP was used to show that the enhancement of the CTL response to alloantigens cannot be accounted for on the basis of an increase in the number of CLP in the anti-Ia + C-treated group.  相似文献   

19.
The alloantigenic specificity Ly-4.2 is present on a restricted population of murine lymphocytes which have previously been shown to have some of the properties generally ascribed to B lymphocytes, both with regard to distribution and function. In the study reported herein, the effect of anti-Ly-4.2 and anti-Thy-1.2 (θ) antisera have been examined in various in vitro systems. (a) T cell-mediated lysis of 51Cr-labeled P815-X2 target cells by immune allogeneic peritoneal exudate cells is inhibited by anti-Thy-1.2, but not affected by the anti-B (Ly-4.2) reagent. (b) Antibody-dependent lymphocyte-mediated lysis of 51Cr-labeled sheep red cells was only slightly inhibited by anti-Ly-4.2 and anti-Ig antisera, and not at all by anti-Thy-1.2 antisera, indicating that this type of cell lysis is mediated by neither T (Thy-l+) nor B (Ly-4.2+,Ig+) cells. (c) The response of lymph node lymphocytes to various mitogens was affected thus: PHA, completely inhibited by anti-Thy-1.2 but not by anti-Ly-4.2; Con A, largely inhibited by anti-Thy-1.2, and slightly by anti-Ly-4.2; PWM (pokeweed mitogen), partially inhibited by both antisera; E. coli endotoxin lipopolysaccharide, greatly inhibited by anti-Ly-4.2 but only slightly by anti-Thy-1.2. The findings demonstrate that anti-Thy-1.2 reacts predominantly with T cells and anti-Ly-4.2 with B cells.  相似文献   

20.
Considerable controversy has arisen regarding the Ly phenotypes of cytotoxic T lymphocytes (CTL) and their precursors (CLP) to alloantigens and modified-self antigens. Although there is general agreement that all CTL and their pregenitors express the Ly2 alloantigen, the presence of the LY1 alloantigen on either CTL or CLP is debated. Clonal assays for CLP, capable of detecting single CLP in the absence of accessory cells, have recently been developed. This assay system provides a sensitive means of determining the Ly phenotypes of CLP to alloantigens or trinitrophenyl- (TNP) modified self antigens. Lymph node cells from C57BL/6 (Ly-1.2, 2.2, 3.2) or CBA (Ly-1.1, 2.1, 3.2) mice were treated with anti-Ly serum and complement (C), and the frequencies of CLP of the treated populations to alloantigens or TNP-modified self antigens were determined. We found that the number of CLP reactive to alloantigens or TNP-modified self antigens were greatly reduced after treatment with either anti-Ly-1 or anti-Ly-2 serum and C in both C57BL/6 and CBA mice. In other words, the CLP to alloantigens or TNP-modified self antigens in these 2 strains of mice are Ly 1+2+. We also found that the CTL derived from the Ly1+2+ CLP were also Ly1+2+. The significance of this finding with respect to the cytotoxic repertoire for alloantigens and modified self antigens is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号