首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F2-Isoprostanes are stable lipid peroxidation products of arachidonic acid, the quantification of which provides an index of oxidative stress in vivo. We describe a method for analysing isoprostaglandin F type III (15-F2t-IsoP) in biological fluids. The method involves solid-phase extraction on octadecyl endcapped and aminopropyl cartridges. After conversion to trimethylsilyl ester trimethylsilyl ether derivatives, isoprostaglandin F type III is analysed by mass spectrometry, operated in electronic impact selected ion monitoring mode. We have compared enzyme immunoassay (EIA; Cayman, Ann Arbor, MI, USA) to this method with 30 human urine aliquots following the same extraction procedure in order to determine the agreement between both methods. Isoprostaglandin F type III concentrations determined with gas chromatography–mass spectrometry (GC–MS) did not agree with those determined with EIA. Our results suggest that GC–MS and EIA do not measure the same compounds. As a consequence, comparison of clinical results using GC–MS and EIA should be avoided.  相似文献   

2.
In order to study the disposition of dimethylamphetamine (DMAP) and its metabolites, DMAP N-oxide, methamphetamine (MA) and amphetamine (AP), from plasma to hair in rats, a simultaneous determination method for these compounds in biological samples using gas chromatography–mass spectrometry with selected ion monitoring (GC–MS-SIM) was developed. As DMAP N-oxide partially degrades to DMAP and MA during GC–MS analysis, it was necessary to avoid conditions which co-extract the N-oxide in the sample preparation so as to assure no contribution of artifactual products from DMAP N-oxide in the detection of the other compounds. For confirmation of the satisfactory separation of DMAP N-oxide from the others, the internal standards used for quantification were labeled with different numbers of deuterium atoms. Determination of unchanged DMAP was performed without any derivatization, that of DMAP N-oxide was carried out after conversion into trifluoroacetyl-MA by reaction with trifluoroacetic anhydride, and MA and AP were quantified after trifluoroacetyl-derivatization.After intraperitoneal administration of DMAP HCl to pigmented hairy rats (5 mg kg−1 day−1, 10 days, n=3), concentrations of DMAP and its metabolites in urine, plasma and hair were measured by GC–MS-SIM. The area under the concentration versus time curves (AUCs) of DMAP, DMAP N-oxide, MA and AP in the plasma were 397.2±97.5, 279.7±68.3, 18.4±1.2 and 15.9±2.2 μg min ml−1, while their concentrations in the hair newly grown for 4 weeks after administration were 4.82±0.67. 0.45±0.09, 3.25±0.36 and 0.89±0.05 ng mg−1, respectively. This fact suggested that the incorporation tendency of DMAP N-oxide from plasma into hair was distinctly low in comparison with the other compounds.  相似文献   

3.
Headspace solid-phase microextraction (HS-SPME) was utilized for the determination of three dichlorobenzene isomers (DCBs) in human blood. In the headspace at 30°C, DCBs were absorbed for 15 min by a 100-μm polydimethylsiloxane (PDMS) fiber. They were then analyzed by capillary column gas chromatography–mass spectrometry (GC–MS). By setting the initial column oven temperature at 20°C, the three isomers were resolved at the baseline level. p-Xylene-d10 was used as the internal standard (I.S.). For quantitation, the molecular ion at m/z 146 for each isomer and the molecular ion at m/z 116 for I.S. were selected. For day-to-day precision, relative standard deviations in the range 3.2–10.7% were found at blood concentrations of 1.0 and 10 μg/ml. Each compound was detectable at a level of at least 0.02 μg per 1 g of whole blood (by full mass scanning). HS-SPME–GC–MS, when performed at relatively low temperatures, was found to be feasible in toxicological laboratories. Using this method, the plasma levels of one patient who had drunk a pesticide-like material were measured.  相似文献   

4.
Gas chromatographic procedures [GC with electron-capture detection (ECD) and GC–MS] for the quantitative analysis of metrifonate and its active metabolite 2,2-dichlorovinyl dimethylphosphate (DDVP) in human blood and urine were developed, validated, and applied to the analysis of clinical study samples. Analysis of metrifonate involved extraction of acidified blood with ethyl acetate followed by solid-phase clean-up of the organic extract. Acidified urine was extracted with dichloromethane and the residue of evaporated organic phase was reconstituted in toluene. ECD and diethyl analogue of metrifonate internal standard (I.S.) were used for quantitation of metrifonate. The metrifonate lower limit of quantitation (LOQ) was 10.0 μg/l. The DDVP metabolite was chromatographed separately after cyclohexane extraction of acidified blood and urine using d6-DDVP I.S. and MS detection. The LOQ of DDVP was 1 μg/l. Stability studies have confirmed that the matrix should be acidified prior to storage at −20°C or −80°C to inhibit chemical and enzymatic degradation of the analytes and to avoid overestimation of DDVP concentrations. Metrifonate was found to be stable in acidified human blood after 20 months of storage at −20°C and after 23 months of storage at −80°C. Under these conditions DDVP was found to be stable after 12 months of storage. Both assay procedures were cross-validated by different world-wide laboratories and found to be accurate and robust during analyses of clinical study samples.  相似文献   

5.
Solid-phase microextraction (SPME) is a unique extraction and sampling technique, and it has been used for separation of volatile organics from water or other simple matrices. In this study, we have used SPME to separate dinitroaniline herbicides from complicated matrices of human urine and blood in order to broaden its application to biomedical analysis. The SPME conditions were optimized for water, urine and blood samples, in terms of pH, salt additives, extraction temperature, and fiber exposure time. Urine or water (1.0 ml) spiked with herbicides and 0.28 g of anhydrous sodium sulfate was preheated at 70°C for 10 min, and a polydimethylsiloxane-coated fiber for SPME was exposed to the headspace at 70°C for another 30 min; while spiked blood (0.5 ml) diluted with water (0.5 ml) was treated at 90°C in the same way. The herbicides were extractable under these conditions, and could be determined by gas chromatography–electron capture detector (GC–ECD). The recoveries of the herbicides, measured at the concentrations of 0.50 and 1.0 ng/ml urine or water, or 6.0 and 20 ng/0.5 ml blood, ranged from 35 to 64% for different herbicides from water or urine, and from 3.2 to 7.2% from blood. The headspace SPME yielded clean extracts of dinitroaniline herbicides from urine, blood or water, which could be directly analyzed by GC–ECD without further purification. The peak areas of the extracted herbicides were proportional to their concentrations in the range 0.1–10 ng/ml in water or urine, or 1–60 ng/0.5 ml in blood. The lowest detectable concentration of the herbicides lay in 0.1 ng/ml water or urine, or in 0.5 ng/0.5 ml blood. The intra- and inter-day coefficients of variation were within 14% for most of the analytes. Although the recoveries of the herbicides were rather low, the linearity of calibration curve and the precision were good. The developed method is more sensitive and much simpler in sample preparation than previously reported ones. With the established SPME method, a dosed herbicide was successfully separated and determined in rats' blood.  相似文献   

6.
The use of 13C-labelled compounds to study lipid metabolism is increasing. Typically less than 40% of the orally administered label is recovered in breath CO2. The remainder must be either absorbed and not oxidised or not absorbed and remain in the faeces. Two methods of determining how much tracer passes through the body, and is present in the stool, were compared. Compound specific analysis of tert.-butyldimethylsilyl [13C]hexadecanoic acid by gas chromatography–mass spectrometry (GC–MS) with electron impact ionisation was compared with bulk analysis of whole stool and lipid extract by continuous flow isotope ratio mass spectrometry (CF–IRMS) with a combustion interface. The mean difference between the IRMS and GC–MS methods was −0.02 mmol 13C d−1 with a mean excretion of 14.2 mmol 13C d−1. Combustion IRMS is both simpler and cheaper, when the objective is to determine how much administered dose appears in stool, and information about the form of the label is not required.  相似文献   

7.
Metabolites of nandrolone were determined in the urine of several sportsmen, sedentary and post-menopausal women by capillary gas chromatography–mass spectrometry quadrupole (GC–MS) and capillary gas chromatography mass–mass spectrometry ion trap (GC–MS–MS) methods. The method employed was GC–EI-MS with 17α-methyltestosterone as internal standard with ethyl ether extraction prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405 and 420 for the nandrolone metabolites, and 418 and 403 for nandrolone derivative. Recovery for nandrolone, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) was 97.20, 94.17 and 95.54%, respectively. Detection limits for nandrolone, 19-NA and 19-NE were 0.03, 0.01 and 0.06 ng/ml. Metabolites of nandrolone (19-NA and 19-NE) were found in 12.5% (n=40) of sportsmen and 40% (n=10) of post-menopausal women.  相似文献   

8.
A simple method for analysis of five local anaesthetics in blood was developed using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry–electron impact ionization selected ion monitoring (GC–MS–EI-SIM). Deuterated lidocaine (d10-lidocaine) was synthesized and used as a desirable internal standard (I.S.). A vial containing a blood sample, 5 M sodium hydroxide and d10-lidocaine (I.S.) was heated at 120°C. The extraction fiber of the SPME system was exposed for 45 min in the headspace of the vial. The compounds adsorbed on the fiber were desorbed by exposing the fiber in the injection port of a GC–MS system. The calibration curves showed linearity in the range of 0.1–20 μg/g for lidocaine and mepivacaine, 0.5–20 μg/g for bupivacaine and 1–20 μg/g for prilocaine in blood. No interfering substances were found, and the time for analysis was 65 min for one sample. In addition, this proposed method was applied to a medico–legal case where the cause of death was suspected to be acute local anaesthetics poisoning. Mepivacaine was detected in the left and right heart blood samples of the victim at concentrations of 18.6 and 15.8 μg/g, respectively.  相似文献   

9.
A comparative study of different derivatization procedures has been performed in order to improve the stability of the reaction products o-phthalaldehyde–N-acetylcysteine (OPA–NAC) polyamines. Procedures such as solution derivatization, solution derivatization followed by retention on a packing support, derivatization on different packing supports and on-column derivatization, have been optimized and compared. The degradation rate constant (k) of the derivative was dependent on the procedure used and on the analyte. For the spermine (the most unstable isoindol tested) k was 8±2×10−2 min−1 in solution versus 7.7±1.1×10−4 min−1 on the (C18) solid support. The results obtained showed that forming the derivative on the packing support (C18) gave the best results following this procedure: conditioning the cartridges with borate buffer (1 ml, 0.5 M, pH 8), retention of the analyte, addition of 0.8 ml of OPA–NAC reagent, 0.2 ml borate buffer 0.8 M (pH 8) and elution of the isoindol with 3 ml of MeOH–borate buffer (9:1). The different derivatization procedures have been used to study the stability of the reaction products OPA–NAC polyamines formed in urine matrix using spermine as model compound. Similar results were obtained for standard solutions and urine samples.  相似文献   

10.
A new high-performance liquid chromatograhic procedure for simultaneous determination of pyrazinamide (PZA) and its three metabolites 5-hydroxypyrazinamide (5-OH-PZA), pyrazinoic acid (PA), and 5-hydroxypyrazinoic acid (5-OH-PA), in rat urine was developed. 5-OH-PZA and 5-OH-PA standards were obtained by enzymatic synthesis (xanthine oxidase) and checked by HPLC and GC–MS. Chromatographic separation was achieved in 0.01 M KH2PO4 (pH 5.2), circulating at 0.9 ml/min, on a C18 silica column, at 22°C. The limits of detection were 300 μg/l for PZA, 125 μg/l for PA, 90 μg/l for 5-OH-PZA and 70 μg/l for 5-OH-PA. Good linearity (r2>0.99) was observed within the calibration ranges studied: 0.375–7.50 mg/l for PZA, 0.416–3.33 mg/l for PA, 0.830–6.64 mg/l for 5-OH-PZA and 2.83–22.6 mg/l for 5-OHPA. Accuracy was always lower than ±10.8%. Precision was in the range 0.33–5.7%. The method will constitute a useful tool for studies on the influence of drug interactions in tuberculosis treatment.  相似文献   

11.
An analytical protocol has been developed for the analysis of urinary 4-pyridoxic acid (4-PA) by gas chromatography—mass spectrometry (GC—MS) for use in metabolic studies. Aliquots of urine were deproteinised and fractionated by isocratic reversed-phase high-performance liquid chromatography. The eluent fraction containing the 4-PA was collected, freeze-dried and silylated using N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide. Derivatisation produced the mono-tert.-butyldimethylsilyl derivative of 4-PA lactone. This derivative was readily amenable to GC—MS analysis in the electron ionisation (70 eV) mode, yielding a prominent fragment ion at m/z 222 ([M — 57]+; base peak). A heavy isotope-labelled derivative of pyridoxine [dideuteriated pyridoxine; 3-hydroxy-4-(hydroxymethyl)-5-[hydroxymethyl-2H2]-2-methylpyridine] has been synthesised and is being employed to determine the kinetics of labelling of the body pools of vitamin B6. Kinetic measurements are based on the determination of the relative proportions of metabolically produced deuterium-labelled and non-labelled 4-PA in urine, obtained from stable isotope ratios determined by low-resolution selected ion monitoring using a bench-top quadrupole GC—MS system.  相似文献   

12.
A selective gas–liquid chromatographic method with mass spectrometry (GC–MS) for the simultaneous confirmation and quantification of ephedrine, pseudo-ephedrine, nor-ephedrine, nor-pseudoephedrine, which are pairs of diastereoisomeric sympathomimetic amines, and methyl-ephedrine was developed for doping control analysis in urine samples. O-Trimethylsilylated and N-mono-trifluoroacetylated derivatives of ephedrines — one derivative was formed for each ephedrine — were prepared and analyzed by GC–MS, after alkaline extraction of urine and evaporation of the organic phase, using d3-ephedrine as internal standard. Calibration curves, with r2>0.98, ranged from 3.0 to 50 μg/ml depending on the analyte. Validation data (specificity, % RSD, accuracy, and recovery) are also presented.  相似文献   

13.
In an isotope dilution assay, prostaglandin (PG) E2, 6-keto-PGF, thromboxane (Tx) B2 and their metabolites PGE-M (11α-hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid), 2,3-dinor-6-keto-PGF, 2,3-dinor-TxB2 and 11-dehydro-TxB2 were determined in urine by gas chromatography—triple stage quadrupole mass spectrometry (GC—MS—MS). After addition of deuterated internal standards, the prostaglandins were derivatized to their methoximes and extracted with ethyl acetate—hexane. The sample was further derivatized to the pentafluorobenzylesters and purified by thin-layer chromatography (TLC). Three zones were scraped from the TLC plate. The prostanoid derivatives were converted to their trimethylsilyl ethers and the products were quantified by GC—MS—MS. In each run, two or three prostanoids were determined.  相似文献   

14.
A GC method using a novel derivatization reagent, 2′,2′,2-trifluoroethyl chloroformate (TFECF), for the derivatization of primary and secondary aliphatic amines with the formation of carbamate esters is presented. The method is based on a derivatization procedure in a two-phase system, where the carbamate ester is formed. The method is applied to the determination of 1,6-hexamethylene diamine (HDA) in aqueous solutions and human urine, using capillary GC. Detection was performed using thermionic specific detection (TSD) and mass spectrometry (MS)—selective-ion monitoring (SIM) using electron-impact (EI) and chemical ionization (CI) with ammonia monitoring both positive (CI)+ and negative ions (CI). Quantitative measurements were made in the chemical ionization mode monitoring both positive and negative ions. Tetra-deuterium-labelled HDA (TDHDA; H2NC2H2(CH2)4C2H2NH2) was used as the internal standard for the GC—MS analysis. In CI+ the m/z 386 and the m/z 390 ions corresponding to the [M + 18]+ ions (M = molecular ion) of HDA—TFECF and TDHDA—TFECF were measured; in CI the m/z 267 and the m/z 271 ions corresponding to the [M — 101] ions. The overall recovery was found to be 97 ± 5% for a HDA concentration of 1000 μg/l in urine. The minimal detectable concentration in urine was found to be less than 20 μg/l using GC—TSD and 0.5 μg/l using GC—SIM. The overall precision for the work-up procedure and GC analysis was ca. 3% (n = 5) for 1000 μg/l HDA-spiked urine, and ca. 4% (n = 5) for 100 μg/l. The precision using GC—SIM for urine samples spiked to a concentration of 5 μg/l was found to be 6.3% (n = 10).  相似文献   

15.
A highly sensitive pre-column HPLC method for simultaneous determination of prolyl dipeptides, Pro and Hyp in urine was developed. The analytes were labelled with 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride at 70°C for 20 min. The derivatives separated on tandem reversed-phase columns by a gradient elution and were monitored with fluorescence detection at 318 nm (excitation) and 392 nm (emission). The detection limits for prolyl dipeptides, Pro and Hyp were 1–5 fmol/injection (S/N=3). Urine samples were treated with o-phthalaldehyde, followed by purification on a Bond Elut C18 column before conducting the labelling reaction. Pro–Hyp, Pro–Gly and Pro–Pro were identified as prolyl dipeptides in urine. The within-day and between-day relative standard deviations were 1.5–4.8 and 1.7–5.8%, respectively. The concentrations of Pro–Hyp, Pro–Gly, Pro–Pro, Pro and Hyp in normal human urine were 97.6±28.2, 2.74±1.48, 2.08±1.13, 6.71±3.34 and 2.30±1.59 nmol/mg creatinine, respectively.  相似文献   

16.
A sensitive, selective, and reproducible GC–MS–SIM method was developed for determination of artemether (ARM) and dihydroartemisinin (DHA) in plasma using artemisinin (ART) as internal standard. Solid phase extraction was performed using C18 Bond Elut cartridges. The analysis was carried out using a HP-5MS 5% phenylmethylsiloxane capillary column. The recoveries of ARM, DHA and ART were 94.9±1.6%, 92.2±4.1% and 81.3±1.2%, respectively. The limit of quantification in plasma was 5 ng/ml (C.V.≤17.4% for ARM and 15.2% for DHA). Calibration curves were linear with R2≥0.988. Within day coefficients of variation were 3–10.4% for ARM and 7.7–14.5% for DHA. Between day coefficients of variations were 6.5–15.4% and 7.6–14.1% for ARM and DHA. The method is currently being used for pharmacokinetic studies. Preliminary data on pharmacokinetics showed Cmax of 245.2 and 35.6 ng/ml reached at 2 and 3 h and AUC0–8h of 2463.6 and 111.8 ngh/ml for ARM and DHA, respectively.  相似文献   

17.
This study investigated the feasibility of applying solid-phase microextraction (SPME) combined with gas chromatography–mass spectrometry to analyze chlorophenols in urine. The SPME experimental procedures to extract chlorophenols in urine were optimized with a polar polyacrylate coated fiber at pH 1, extraction time for 50 min and desorption in GC injector at 290°C for 2 min. The linearity was obtained with a precision below 10% R.S.D. for the studied chlorophenols in a wide range from 0.1 to 100 μg/l. In addition, sample extraction by SPME was used to estimate the detection limits of chlorophenols in urine, with selected ion monitoring of GC–MS operated in the electron impact mode and negative chemical ionization mode. Detection limits were obtained at the low ng/l levels. The application of the methods to the determination of chlorophenols in real samples was tested by analyzing urine samples of sawmill workers. The chlorophenols were found in workers, the urinary concentration ranging from 0.02 μg/l (PCP) to 1.56 μg/l (2,4-DCP) depending on chlorophenols. The results show that trace chlorophenols have been detected with SPME–GC–MS in the workers of sawmill where chlorophenol-containing anti-stain agents had been previously used.  相似文献   

18.
A method was developed for the quantification of the flavonoids quercetin and kaempferol in human urine using a solid-phase extraction procedure followed by gas chromatography–mass spectrometry. Deuterated internal standards of the analytes were spiked into the samples prior to extraction. The limit of detection of the method was ca. 10 pg on column and precision of the method for quantification in a sample of urine was ±9.40% for kaempferol and ±7.34% for quercetin (n=6). The levels of quercetin and kaempferol found in urine samples were only a small fraction of the amount ingested. The treatment of urine samples with β-glucuronidase markedly increased the levels of flavonoids detected, supporting the view that kaempferol and quercetin are eliminated in the urine as glucuronides.  相似文献   

19.
An improved solid-phase extraction (SPE) method was developed to isolate and concentrate trace levels of selected POPs (persistent organochlorine pollutants) in human serum prior to GC–MS in SIM mode or GC–ECD quantitation. The extraction involves denaturation of serum proteins with formic acid, SPE using C18 Empore™ disk cartridges, followed by elimination of lipid interferences using a sulfuric acid wash of the eluate. Use of the SPE disk improved assay throughput and gave a cleaner analytical matrix compared with previously reported solid-phase and liquid–liquid extraction techniques. The extraction method provided consistent recoveries at three fortification levels using 13C12 PCB 149 as internal standard. Recoveries ranged from 48 to 140% for organochlorine pesticides (6.25, 12.5 and 25 ng/ml) and 71 to 126% for polychlorinated biphenyls (0.625, 1.25 and 2.5 ng/ml).  相似文献   

20.
A procedure based on gas chromatography–tandem mass spectrometry for identification and quantitation of lorazepam in plasma and urine is presented. The analyte was extracted from biological fluids under alkaline conditions using solid-phase extraction with an Extrelut-1 column in the presence of oxazepam-d5 as the internal standard. Both compounds were then converted to their trimethylsilyl derivatives and the reaction products were identified and quantitated by gas chromatography–tandem mass spectrometry using the product ions of the two compounds (m/z 341, 306 and 267 for lorazepam derivative and m/z 346, 309 and 271 for oxazepam-d5 derivative) formed from the parent ions by collision-induced dissociation in the ion trap spectrometer. Limit of quantitation was 0.1 ng/ml. This method was validated for urine and plasma samples of individuals in treatment with the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号