首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In experiments on inbred mice infected with B. anthracis capsular strain 71/12 of Tsenkovsky's second vaccine B. anthracis lethal toxin introduced in mixture with spores has been shown to aggravate anthrax infection in CBA mice susceptible to anthrax, while producing a faint effect on the infectious process in BALB mice with hereditary resistance to anthrax. B. anthracis purified edema toxin has been found to produce a weaker aggravating effect with respect to anthrax infection than the lethal toxin. As revealed in these experiments, the capacity of the lethal toxin to suppress the activity of peritoneal macrophages in vitro is the more pronounced, the more resistant to anthrax are the mice used as the donors of these macrophages. The mechanism of hereditary immunity which may ensure resistance to infection in the presence of immunosuppression is discussed.  相似文献   

2.
Anthrax produces at least two toxins that cause an intense systemic inflammatory response, edema, shock, and eventually death. The relative contributions of various elements of the immune response to mortality and course of disease progression are poorly understood. We hypothesized that knockout mice missing components of the immune system will have an altered response to infection. Parent strain mice and knockouts were challenged with LD95 of anthrax spores (5 x 10(6)) administered subcutaneously. Our results show that all genetic knockouts succumbed to anthrax infection at the same frequency as the parent. TNF antibody delayed death but TNF receptor 1 knockout had no effect. IL-1 receptor or iNOS knockouts died sooner. Anthrax was more abundant in the injection site of TNF-alpha and iNOS knockouts compared to parent suggesting that attenuated cellular response increases rate of disease progression. With the exception of edema and necrosis at the injection site pathological changes in internal organs were not observed.  相似文献   

3.
Bacillus anthracis spores germinate to vegetative forms in host cells, and produced fatal toxins. A toxin-targeting prophylaxis blocks the effect of toxin, but may allow to grow vegetative cells which create subsequent toxemia. In this study, we examined protective effect of extractable antigen 1 (EA1), a major S-layer component of B. anthracis, against anthrax. Mice were intranasally immunized with recombinant EA1, followed by a lethal challenge of B. anthracis spores. Mucosal immunization with EA1 resulted in a significant level of anti-EA1 antibodies in feces, saliva and serum. It also delayed the onset of anthrax and remarkably decreased the mortality rate. In addition, the combination of EA1 and protective antigen (PA) protected all immunized mice from a lethal challenge with B. anthracis spores. The numbers of bacteria in tissues of EA1-immunized mice were significantly decreased compared to those in the control and PA alone-immunized mice. Immunity to EA1 might contribute to protection at the early phase of infection, i.e., before massive multiplication and toxin production by vegetative cells. These results suggest that EA1 is a novel candidate for anthrax vaccine and provides a more effective protection when used in combination with PA.  相似文献   

4.
Neutrophils isolated from BALB/c or C57BL/6 mice and treated in vitro with anthrax lethal toxin release bioactive neutrophil elastase, a proinflammatory mediator of tissue destruction. Similarly, neutrophils isolated from mice treated with anthrax lethal toxin in vivo and cultured ex vivo release greater amounts of elastase than neutrophils from vehicle-treated controls. Direct measurements from murine intestinal tissue samples demonstrate an anthrax lethal toxin-dependent increase in neutrophil elastase activity in vivo as well. These findings correlate with marked lethal toxin-induced intestinal ulceration and bleeding in neutrophil elastase(+/+) animals, but not in neutrophil elastase(-/-) animals. Moreover, neutrophil elastase(-/-) mice have a significant survival advantage over neutrophil elastase(+/+) animals following exposure to anthrax lethal toxin, thereby establishing a key role for neutrophil elastase in mediating the deleterious effects of anthrax lethal toxin.  相似文献   

5.

Background

Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis.

Methodology/Principal Findings

Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components.

Conclusion/Significance

Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.  相似文献   

6.
Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhalational anthrax because they initiate germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign particles and migrate to lymph nodes. However, the participation of DCs in phagocytosis and dissemination of spores has not been investigated previously. We found that human DCs readily engulfed fully pathogenic Ames and attenuated B. anthracis spores predominately by coiling phagocytosis. Spores provoked a loss of tissue-retaining chemokine receptors (CCR2, CCR5) with a concurrent increase in lymph node homing receptors (CCR7, CD11c) on the membrane of DCs. After spore infection, immature DCs displayed a mature phenotype (CD83(bright), HLA-DR(bright), CD80(bright), CD86(bright), CD40(bright)) and enhanced costimulatory activity. Surprisingly, spores activated the MAPK cascade (ERK, p38) within 30 min and stimulated expression of several inflammatory response genes by 2 h. MAPK signaling was extinguished by 6 h infection, and there was a dramatic reduction of secreted TNF-alpha, IL-6, and IL-8 in the absence of DC death. This corresponded temporally with enzymatic cleavage of proximal MAPK signaling proteins (MEK-1, MEK-3, and MAP kinase kinase-4) and may indicate activity of anthrax lethal toxin. Taken together, these results suggest that B. anthracis may exploit DCs to facilitate infection.  相似文献   

7.
Anthrax lethal toxin (LT), one of the primary virulence factors of Bacillus anthracis, causes anthrax-like symptoms and death in animals. Experiments have indicated that levels of erythrocytopenia and hypoxic stress are associated with disease severity after administering LT. In this study, the granulocyte colony-stimulating factor (G-CSF) was used as a therapeutic agent to ameliorate anthrax-LT- and spore-induced mortality in C57BL/6J mice. We demonstrated that G-CSF promoted the mobilization of mature erythrocytes to peripheral blood, resulting in a significantly faster recovery from erythrocytopenia. In addition, combined treatment using G-CSF and erythropoietin tended to ameliorate B. anthracis-spore-elicited mortality in mice. Although specific treatments against LT-mediated pathogenesis remain elusive, these results may be useful in developing feasible strategies to treat anthrax.  相似文献   

8.
Systemic cytokine response in murine anthrax   总被引:1,自引:0,他引:1  
Systemic pro-inflammatory cytokine release has been previously implicated as a major death-causing factor in anthrax, however, direct data have been absent. We determined the levels of IL-1 beta, IL-6 and TNF-alpha in serum of mice challenged with virulent (Ames) or attenuated (Sterne) strains of Bacillus anthracis. More than 10-fold increase in the IL-1beta levels was detected in Ames-challenged Balb/c mice, in contrast to more susceptible C57BL/6 mice, which showed no IL-1beta response. Balb/c mice have also responded with higher levels of IL-6. The A/J mice demonstrated IL-1beta and IL-6 systemic response to either Ames or Sterne strain of B. anthracis, whereas no increase in TNF-alpha was detected in any murine strain. We used RT-PCR for gene expression analyses in the liver which often is a major source of cytokines and one of the main targets in infectious diseases. A/J mice challenged with B. anthracis (Sterne) showed increased gene expression for Fas, FasL, Bax, IL-1 beta, TNF-alpha, TGF-beta, MIP-1alpha, KC and RANTES. These data favour the hypothesis that apoptotic cell death during anthrax infection causes chemokine-induced transmigration of inflammatory cells to vitally important organs such as liver. Administration of caspase inhibitors z-VAD-fmk and ac-YVAD-cmk improved survival in Sterne-challenged mice indicating a pathogenic role of apoptosis in anthrax.  相似文献   

9.
Bacillus anthracis produces lethal toxin (LT) and edema toxin (ET), and they suppress the function of LPS-stimulated dendritic cells (DCs). Because DCs respond differently to various microbial stimuli, we compared toxin effects in bone marrow DCs stimulated with either LPS or Legionella pneumophila (Lp). LT, not ET, was more toxic for cells from BALB/c than from C57BL/6 (B6) as measured by 7-AAD uptake; however, ET suppressed CD11c expression. LT suppressed IL-12, IL-6, and TNF-alpha in cells from BALB/c and B6 mice but increased IL-1beta in LPS-stimulated cultures. ET also suppressed IL-12 and TNF-alpha, but increased IL-6 and IL-1beta in Lp-stimulated cells from B6. Regarding maturation marker expression, LT increased MHCII and CD86 while suppressing CD40 and CD80; ET generally decreased marker expression across all groups. We conclude that the suppression of cytokine production by anthrax toxins is dependent on variables, including the source of the DCs, the type of stimulus and cytokine measured, and the individual toxin tested. However, LT and ET enhancement or suppression of maturation marker expression is more related to the marker studied than the stimuli or cell source. Anthrax toxins are not uniformly suppressive of DC function but instead can increase function under defined conditions.  相似文献   

10.
The profound clinical consequences of Gram-positive toxic shock are hypothesized to stem from excessive Th1 responses to superantigens. We used a new superantigen-sensitive transgenic model to explore the role of TCRalphabeta T cells in responses to staphylococcal enterotoxin B (SEB) in vitro and in two different in vivo models. The proliferative and cytokine responses of HLA-DR1 spleen cells were 100-fold more sensitive than controls and were entirely dependent on TCRalphabeta T cells. HLA-DR1 mice showed greater sensitivity in vivo to two doses of SEB with higher mortality and serum cytokines than controls. When d-galactosamine was used as a sensitizing agent with a single dose of SEB, HLA-DR1 mice died of toxic shock whereas controls did not. In this sensitized model of toxic shock there was a biphasic release of cytokines, including TNF-alpha, at 2 h and before death at 7 h. In both models, mortality and cytokine release at both time points were dependent on TCRalphabeta T cells. Anti-TNF-alpha pretreatment was protective against shock whereas anti-IFN gamma pretreatment and delayed anti-TNF-alpha treatment were not. Importantly, anti-TNF-alpha pretreatment inhibited the early TNF-alpha response but did not inhibit the later TNF-alpha burst, to which mortality has previously been attributed. Splenic T cells were shown definitively to be the major source of TNF-alpha during the acute cytokine response. Our results demonstrate unequivocally that TCRalphabeta T cells are critical for lethality in toxic shock but it is the early TNF-alpha response and not the later cytokine surge that mediates lethal shock.  相似文献   

11.
Lethal toxin is a major anthrax virulence factor, causing the rapid death of experimental animals. Lethal toxin can enter most cell types, but only certain macrophages and cell lines are susceptible to toxin-mediated cytolysis. We have shown that in murine RAW 264.7 cells, sublytic amounts of lethal toxin trigger intracellular signaling events typical for apoptosis, including changes in membrane permeability, loss of mitochondrial membrane potential, and DNA fragmentation. The cells were protected from the toxin by specific inhibitors of caspase-1, -2, -3, -4, -6, and -8. Phagocytic activity of macrophages was inhibited by sublytic concentrations of lethal toxin. Infection of cells with anthrax (Sterne) spores impaired their bactericidal capacity, which could be reversed by a lethal toxin inhibitor, bestatin. We suggest that apoptosis rather than direct lysis is biologically relevant to lethal toxin intracellular activity.  相似文献   

12.
Intravenous injection of purified tetanus toxin(1000-0.06 μg) killed mice within minutes(20–450 min), causing flaccid paralysis indistinguishable from that in botulinum intoxication: a linear relation was found between the log of the toxin dose and that of death time(survival time). The dose and route dependences of the manifestations of the spastic paralysis typical of classical tetanus and of the acute botulinum-like flaccid paralysis were studied in relation to the death time. Treatment of the toxin with trypsin or gangliosides did not affect its acute botulinum-like toxicity. Theophylline delayed the time of acute death due to the botulinum-like intoxication in mice caused by tetanus toxin and provided some protection.  相似文献   

13.
Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4) of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide) (PLGA) - an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP) formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001). Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form of PAD4-NP. Further work in this direction may produce a better and safer candidate anthrax vaccine.  相似文献   

14.
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.  相似文献   

15.
Lethal toxin actions and their consequences   总被引:2,自引:0,他引:2  
After entry of infectious anthrax spores into the body, host-specific signals induce spore germination, outgrowth of vegetative bacilli and the expression of lethal toxin and other virulence factors. Anthrax lethal toxin (LeTx) is a virulence factor responsible for the major pathologies seen during systemic anthrax infections. Injection of sterile LeTx into test animals mimics the shock and sudden death seen during active bacterial infections. Once large levels of LeTx are produced within the body, destruction of bacteria by administration of antibiotics is usually unsuccessful. The LeTx is believed to be secreted into the bloodstream where it circulates freely throughout the body and binds and enters host cells. Once in the cytoplasm, the lethal factor acts as a zinc-metalloprotease disrupting normal homoeostatic functions. Macrophages are a uniquely sensitive cell type that seem to be vital global mediators of toxin-induced pathologies. Removal of macrophages from mice renders them insensitive to LeTx challenge. Low levels of lethal toxin induce macrophage production, in vitro, of the shock-inducing cytokines TNF and Il-1beta. Higher levels of LeTx cause over-production of reactive oxygen intermediates, bursting of macrophages and release of mediators of shock. We believe that agents capable of blocking key steps of the lethal toxin cascade may prove useful in combating anthrax pathologies.  相似文献   

16.
Tumor necrosis factor (TNF)-alpha and Fas ligand (FasL) are trimeric proteins that induce apoptosis through similar caspase-dependent pathways. Hepatocytes are particularly sensitive to inflammation-induced programmed cell death, although the contribution of TNF-alpha and/or FasL to this injury response is still unclear. Here, we report that D-galactosamine and lipopolysaccharide-induced liver injury in C57BL/6 mice is associated with increased hepatic expression of both TNF-alpha and FasL mRNA. Pretreatment of mice with a TNF-binding protein improved survival, reduced plasma aspartate aminotransferase concentrations, and attenuated the apoptotic liver injury, as determined histologically and by in situ 3' OH end labeling of fragmented nuclear DNA. In contrast, pretreatment of mice with a murine-soluble Fas fusion protein (Fasfp) had only minimal effect on survival, and apoptotic liver injury was either unaffected or exacerbated depending on the dose of Fasfp employed. Similarly, mice with a spontaneous mutation in FasL (B6Smn.C3H-Fasl(gld) derived from C57BL/6) were equally sensitive to D-galactosamine/lipopolysaccharide-induced shock. We conclude that the shock and apoptotic liver injury after D-galactosamine/lipopolysaccharide treatment are due primarily to TNF-alpha release, whereas increased FasL expression appears to contribute little to the mortality and hepatic injury.  相似文献   

17.
Summary Normal C57BL/6 (B6) spleen cells were cultured with syngeneic EL4 tumour cells, expanded in IL2-containing medium, and tested for anti-tumour activity in vitro and in vivo. The activated cells were highly cytotoxic for EL4 and to a lesser degree killed syngeneic B6 blasts and allogeneic (D2) P815 tumour cells. B6 or BDF1 mice that received these cultured cells by IP injection cleared 125IUdR-labelled EL4 cells faster than untreated mice. However, this enhanced clearance was evident only 7–12 days after injection. Since the injected cells had a short half-life (<10% remaining after 48 h) the effect of these cells in vivo was most probably due to the activation of the host's immune system. Mice that received cultured cells survived significantly longer than untreated mice following a lethal dose of EL4 cells. Cultured cells were much more effective in prolonging survival when used in conjunction with cyclophosphamide (CY). In animals receiving either cultured cells with or without CY or CY alone tumour clearance was markedly enhanced 7–12 days after injection.When challenged with a small dose of EL4 tumour cells (1×104 SC per mouse) three of ten B6 mice treated with B6 anti-EL4 cultured cells were able to survive indefinitely. The frequency of CTL precursors to EL4 from the spleen cells of these surviving animals was about five-fold higher than that of normal spleen cells. Furthermore, CTL derived from primed spleen cells were more specific for EL4 than those derived from normal spleen cells.Abbreviations B6 C57BL/6J - BDF1 (C57BL/6J×DBA/2J) F1 - ConA SN concanavalin A supernatant - CTL cytotoxic T lymphocytes - CTL-P cytotoxic T-lymphocyte precursors - CY cyclophosphamide - E/T effector-to-target ratio - IL2 interleukin 2 - IP intraperitoneal - IUdR iododeoxyuridine - IV intravenous - LPS lipopolysaccharide - MST mean survival time  相似文献   

18.
The role of macrophages in the pathogenesis of anthrax is unresolved. Macrophages are believed to support the initiation of infection by Bacillus anthracis spores, yet are also sporicidal. Furthermore, it is believed that the anthrax toxins suppress normal macrophage function. However, the significance of toxin effects on macrophages has not been addressed in an in vivo infection model. We used mutant derivatives of murine macrophage RAW264.7 cells that are toxin receptor-negative (R3D) to test the role of toxin-targeting of macrophages during a challenge with spores of the Ames strain of B. anthracis in both in vivo and in vitro models. We found that the R3D cells were able to control challenge with Ames when mice were inoculated with the cells prior to spore challenge. These findings were confirmed in vitro by high dose spore infection of macrophages. Interestingly, whereas the R3D cells provided a significantly greater survival advantage against spores than did the wild type RAW264.7 cells or R3D-complemented cells, the protection afforded the mutant and wild type cells was equivalent against a bacillus challenge. The findings appear to be the first specific test of the role of toxin targeting of macrophages during infection with B. anthracis spores.  相似文献   

19.
AIM: To establish whether activation of adenosine type-3 receptors (A3Rs) and inhibition of interleukin-1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores.METHODS: DBA/2 mice were challenged with Bacillus anthracis spores of the toxigenic Sterne strain 43F2. Survival of animals was monitored for 15 d. Ciprofloxacin treatment (50 mg/kg, once daily, intraperitoneally) was initiated at day +1 simultaneously with the administration of inhibitors, and continued for 10 d. Two doses (2.5 mg/kg and 12.5 mg/kg) of acetyl-tyrosyl-valyl-alanyl-aspartyl-chloromethylketone (YVAD) and three doses (0.05, 0.15 and 0.3 mg/kg) of 1-[2-Chloro-6-[[(3-iodophenyl) methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-β-D- ribofuranuronamide (Cl-IB-MECA) were tested. Animals received YVAD on days 1-4, and Cl-IB-MECA on days 1-10 once daily, subcutaneously. Human lung epithelial cells in culture were challenged with spores or edema toxin and the effects of IB-MECA on phosphorylation of AKT and generation of cAMP were tested.RESULTS: We showed that the outcome of antibiotic treatment in a murine anthrax model could be substantially improved by co-administration of the caspase-1/4 inhibitor YVAD and the A3R agonist Cl-IB-MECA. Combination treatment with these substances and ciprofloxacin resulted in up to 90% synergistic protection. All untreated mice died, and antibiotic alone protected only 30% of animals. We conclude that both substances target the aberrant host signaling that underpins anthrax mortality.CONCLUSION: Our findings suggest new possibilities for combination therapy of anthrax with antibiotics, A3R agonists and caspase-1 inhibitors.  相似文献   

20.
Many pathogens have acquired strategies to combat the immune response. Bacillus anthracis interferes with host defenses by releasing anthrax lethal toxin (LT), which inactivates mitogen-activated protein kinase pathways, rendering dendritic cells (DCs) and T lymphocytes nonresponsive to immune stimulation. However, these cell types are considered resistant to killing by LT. Here we show that LT kills primary human DCs in vitro, and murine DCs in vitro and in vivo. Kinetics of LT-mediated killing of murine DCs, as well as cell death pathways induced, were dependent upon genetic background: LT triggered rapid necrosis in BALB/c-derived DCs, and slow apoptosis in C57BL/6-derived DCs. This is consistent with rapid and slow killing of LT-injected BALB/c and C57BL/6 mice, respectively. We present evidence that anthrax LT impairs adaptive immunity by specifically targeting DCs. This may represent an immune-evasion strategy of the bacterium, and contribute to anthrax disease progression. We also established that genetic background determines whether apoptosis or necrosis is induced by LT. Finally, killing of C57BL/6-derived DCs by LT mirrors that of human DCs, suggesting that C57BL/6 DCs represent a better model system for human anthrax than the prototypical BALB/c macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号