首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-amino-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1- (2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2,3-dideoxy-β- D-ribofuranosyl)uracil (), 5-amino-1-(2,3-dideoxy-α,β-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-α,β-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-β-D-ribofuranosyl)cytosine (). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

2.
Abstract

1-(2,3-Dideoxy-3-C-hydroxmethyl-β-D-threo-pentofuranosyl) -,1- (2,3-didehydro-2,3-dideoxy-3-C-hydroxymethyl-β-D-glycero- pentofuranosyl) -and 1-(3-C-azidomethyl-2,3-dideoxy-3-C-hydroxymethyl-β-D-glycero- pentofuranosyl)uracil, thymine and cytosine were synthesized and evaluated for anti-HIV activity. The synthetic strategy was based on an allylic alcohol transposition of the corresponding 3′-C-methylene-nucleoside analogues.  相似文献   

3.
Abstract

Adenine and thymine derivatives of 2′,3′-dideoxy-2′,3′-didehydropento-pyranosyl nucleosides carrying a phosphonomethyl moiety at their 4′-O-position and in a cis relationship with the heterocyclic base have been synthesized.  相似文献   

4.
Abstract

The preparation of 3-alkyl D4T derivatives has been carried out starting from the corresponding 5′-O-t-butyldimethylsilyl-3′-O-methanesulfonylthymidine 2 by way of deprotection-elimination and succesive alkylation reactions.  相似文献   

5.
Abstract

Reaction of 2′,5′-dichloro-2′,5′-dideoxyuridine (1) with ammonia and benzylamine afforded the corresponding 2-N-substituted 1-(5-chloro-5-deoxy-β-D-arabinofuranosyl)-isocytosine derivatives (2 and 10). Reaction of 1 with ammonia, methylamine, cyclohexylamine, and benzylamine followed by treatment with methanolic sodium methoxide gave the corresponding 2-N-substituted 1-(2,5-anhydro-β-D-arabino-furanosyl)isocytosine derivatives (6, 11, and 12).  相似文献   

6.
Abstract

1-(2,3-Dideoxy-2-C-hydroxymethyl-β-D-threo-pentofuranosyl)-, 1-(2,3-didehydro-2,3-dideoxy-2-C-hydroxymethyl-β-D-glycero-pentofuranosyl)- and 1-(2-C-azidomethyl-2,3-didehydro-2,3-dideoxy-β-D-glycero-pentofuranosyl)uracuracil, thymine and cytosine were synthesized and evaluated for their anti-HIV activities. A key step of the synthesis involves a novel alcohol transposition of2-methylene-nucleoside analogues.  相似文献   

7.
Abstract

The syntheses of 2′,3′-didehydro-2′,3′-dideoxyisoinosine (d4isoI, 4) as well as 7-deaza-2′,3′-didehydro-2′,3′-dideoxyisoinosine (d4c7isoI, 5) are described. Compounds 4 and 5 show both strong fluorescence. Compound 4 is oxidized by xanthine oxidase to give the corresponding xanthine 2′,3′-dideoxy-2′,3′-didehydronucleosides. A preparative chemo-enzymatic synthesis of 2′-deoxyxanthosine (3) is described.  相似文献   

8.
Abstract

2′, 3′-Didehydro-2′, 3′-dideoxyisoguanosine (2) and 2′, 3′- dideoxyisoguanosine (3) have been synthesized by utilizing the Corey-Winter approach starting from isoguanosine. The 6-amino and 5′-hydroxy biprotected isoguanosine derivative was converted to the corresponding 2′, 3′- thionocarbonate, which was heated with triethyl phosphite to afford the 2′,3′- olefinic product. Either a tert-butyldimethylsilyl or a 4, 4′-dimethoxytrityl group was used in the protection of 5′-hydroxy function. Compounds 2 and 3 were found inactive against human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), and herpes simplex virus type 1 (HSV-1).

  相似文献   

9.
Abstract

2′,3′-Dibromo-2′,3′-dideoxy-5′-O-trityl-2′,3′-secouridine (8) with sdKF gave the 3′,4′-didehydro-2,2′-anhydro nucleoside 9, which was deprotected to 10. Hydrolysis of 9 gave 3′,4′-didehydro-3′-deoxy-5′-O-trityl-2′,3′-secouridine (11a). Similarly, compound 9 with pyridinium halides gave the corresponding 2′-deoxy-2′-halo nucleosides (11b-d). Compound 11d with azide ion gave 2′-azido analogue 11e. Compound 9 with an excess amount of azide ion gave the 2′-azido triazole (13).  相似文献   

10.
Abstract

A series of 3′-branched 4′-azanucleoside analogues have been prepared. These compounds comprise three asymmetric atoms, two carbons and one nitrogen. They constitute nucleoside analogues imparted with a “flickering configuration”, the nitrogen inversion replacing a D-L epimerization of their natural congeners. The 1′,3′-cis and 1′,3′-trans isomers have been separated and their configuration established by 1H NMR and the X-ray diffraction structure of one crystalline example. The configurations of the frozen invertomers were assessed by low temperature 1H NMR experiments assisted by molecular mechanics simulations. None of these compounds exhibited any significant in vitro antiviral activity.  相似文献   

11.
The methods of synthesis of the derivatives of nucleoside analogues esterified with various aliphatic, aromatic, and heteroaromatic acids and the construction from them of molecular transport systems that involve lipids, carbohydrates, peptides, and amino acids are discussed. The characteristics of the biological activity of a number of such systems are described.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 4, 2005, pp. 339–356.Original Russian Text Copyright © 2005 by Berezovskaya, Chudinov.  相似文献   

12.
13.
The methods of synthesis of conjugates of anti-HIV nucleosides with various compounds, such as protease inhibitors, peptides, polysaccharides, and bicyclames are considered; they are designated for the combined therapy of HIV.  相似文献   

14.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   

15.
Abstract

Treatment of uridine (1) with acetyl bromide produced bromoacetate 2 which was reduced with Zn/Cu to give the 2′,3′-unsaturated uridine (d4U; 3). Conversion of the uracil moiety of 3 to thioamide 7 with Lawesson's reagent, followed by amination and deprotection with methanolic ammonia, afforded d4C (9). This multigram scale process for the synthesis of d4C proceeded in 20% yield from uridine.  相似文献   

16.
An improved synthesis of N2‐protected‐3′‐azido‐2′,3′‐dideoxyguanosine 20 and 23 is described. Deoxygenation of 2′‐O‐alkyl (and/or aryl) sulfonyl‐5′‐dimethoxytritylguanosine coupled with [1,2]‐hydride shift rearrangement gave protected 9‐(2‐deoxy‐threo‐pentofuranosyl)guanines ( 10 , 12 and 16 ). This rearrangement was accomplished in high yield with a high degree of stereoselectivity using lithium triisobutylborohydride (l‐Selectride®). Compounds 10 , 12 and 16 were transformed into 3′‐O‐mesylates ( 18 and 21 ), which can be used for 3′‐substitution. The 3′‐azido nucleosides were obtained by treatment of 18 and 21 with lithium azide. This procedure is reproducible with a good overall yield.  相似文献   

17.
Abstract

A new, high-yielding method for introduction of the selenophenyl residue at the 3′-position of thymidine is reported. This reaction avoided any strongly basic or reductive reagent, thus allowing the use of benzoate ester as a protective group at O-5′. Further oxidation-elimination sequence followed by basic deprotection afforded 2′,3′-didehydro-2′,3′-dideoxythymidine (D4T) in 67.5% overall yield from thymidine.  相似文献   

18.
Abstract

O4′-Nor-2′,3′-dideoxy-2′,3′-didehydronucleoside 5′-triphosphates (acyclo-d4NTP) have been shown to have the properties of effective termination substrates for DNA biosynthesis, catalyzed by several different DNA polymerases.  相似文献   

19.

The mode of cyclization (5-exo versus 6-endo) of 2-sila-5-hexen-1-yl radicals generated from 2′-tributylstannyl- and 2′-trimethylsilyl-6-(bromomethyl)dimethylsilyl-1′,2′-unsaturated uridines (8 and 9) was investigated. Although the actual structure of the reaction products differ from each other, reflecting the ease of elimination of the 2′-substituent, it was found that both substrates prefer the 5-exo-cyclization pathway.  相似文献   

20.
Abstract

A simple and efficient protocol for the preparation of various symmetrical dinucleoside phosphoramidates derived from AZT, is presented. It consists of the phosphonylation of AZT with phosphonic acid in the presence of DCC to produce the symmetrical H-phosphonate diester, followed by its oxidative conversion to various phosphoramidate analogues. The synthesized compounds were evaluated for their anti-HIV activity in different cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号