首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A series of pyridine C-nucleosides was synthesised by reaction of lithio pyridines with 2, 4; 3, 5-di-benzylidene-D-ribose in the initial step.  相似文献   

2.
Abstract

Acetylsalicylic acid (aspirin) reacted with adenosine, cytidine, guanosine and their 2′-deoxynucleosides to give acetylated nucleosides. Cytidine and 2′-deoxycytidine gave N4-acetylated nucleosides in nitromethane while in pyridine fully acetylated products were obtained. Adenosine and 2′-deoxyadenosine also gave fully acetylated products. However, guanosine and 2′-deoxyguanosine gave 2′,3′,5′-tri-O-acetylribosyl and 3′,5′-di-O-acetyl-2′-deoxyribosyl nucleosides, respectively. The corresponding aglycons also gave acetylated heterocycles under various conditions.  相似文献   

3.
A study of C-nucleophilic substitution at the C4-position on pyrimidine and C6-position on 2′-deoxyguanosine to produce novel nucleosides is presented with the spectroscopic properties of their respective substitution products. C4-(1,2,4-triazol-1-yl) pyrimidine nucleosides 1 were treated with nitroalkanes, malononitrile, acetylacetone, ethyl nitroacetate, acetoacetate and cyanoacetate at 100°C in dioxane in the presence of DBU resulting in the production of novel nucleosides 2–11. To explore the application of this methodology to purine chemistry, this approach was used to produce novel analogs from 2′-deoxyguanosine. We found that the triazolo derivative 12 undergoes C-nucleophilic substitution with nitromethane, malononitrile, acetylacetone, ethyl nitroacetate and cyanoacetate in the presence of potassium carbonate (K2CO3) in DMF at 100°C to give novel nucleosides 13–7.  相似文献   

4.
A simple, rapid and regioselective approach for the synthesis of C-acyclic nucleosides 3, 4, 6, and 9 of dihydropyrimidine, imidazole and indeno[1,2-b]pyridine-9-one derived from 1,2- and 1,3-diketones was performed. By using DMF or pyridine as solvent or bentonite clay as a support, in the presence of TMSTf, ZnCl2, NH4OAc, or NH4NO3, all the desired products were obtained within 5–25 minutes under microwave irradiation (MWI). Acid hydrolysis of 6 and 9 afforded the free acyclic C-nucleosides 7 and 10, respectively. Upon treatment with NaOMe under MWI, 3 and 14 rearranged to the C-nucleoside 4 and 16.  相似文献   

5.
Reaction of monosaccharides (D-glucose, D-galactose, D-xylose or L-arabinose) with 6-amino-3-aryl-2-methyl-4-(3H) quinazolinones (1a–c) in boiling methanol yielded the corresponding N-glycopyranosides 3a–c, 4a–c, 5a,b and 6a,b. The N-glycopyranosides 3a–c, 4a–c, 5a,b and 6a,b were acetylated with acetic anhydride and pyridine to give the corresponding acetate derivatives 7a–c, 8a–c, 9a,b and 10a,b. The structures of all these glycosides were assessed by elemental analysis, IR, NMR and mass spectra. Some of these products were tested for anticancer and anti-AIDS activity.  相似文献   

6.
Abstract

Cyclopropyl carbocyclic nucleosides have been synthesized from the key intermediate 2 which was converted to the mesylated cyclopropyl methyl alcohol 3. Condensation of compound 3 with various purine and pyrimidine bases gave the desired nucleosides. All synthesized nucleosides were evaluated for antiviral activity and cellular toxicity. Among them adenine 22 and guanine 23 derivatives showed moderate antiviral activity against HIV-1 and HBV. None of the other compounds showed any significant antiviral activities against HIV-1, HBV, HSV-1 and HSV-2 in vitro up to 100μM.  相似文献   

7.
The synthesis of 1-[1-(4-hydroxybutyl)-1,2,3-triazol-(4 and 5)-ylmethyl] -1H-pyrazolo[3,4-d]pyrimidines 11a,b, 12a,b and 1317 as carboacyclic nucleosides is described. The compounds 8a,b were condensed, separately, with compound 7 via 1,3-dipolar cycloaddition reaction to afford, after separation and deprotection, 1,4-regioisomers 11a,b and 1,5-regioisomers 12a,b. The deprotected carboacyclic nucleosides 11a served as precursor for the preparation of 4-amino 13, 4-methylamino 14, 4-benzylamino 15, 4-methoxy 16 and 4-hydroxy 17 analogues. All deprotected carboacyclic nucleosides were evaluated for their inhibitory effects against the replication of HIV-1(IIIB), HIV-2(ROD), various DNA viruses, a variety of tumor-cell lines and tuberculosis. No marked biological activity was found.  相似文献   

8.
Abstract

The reaction of 5-protected α,β-unsaturated γ-lactone 4 with trialkylphosphite gave 3′-C-dialkylphosphono-erythro lactone 5 in high yields. The lactone 5 was reduced with DIBAL to the corresponding lactol, which was converted to the acetate 6 by treatment with acetic anhydride in pyridine. The acetate 6 was coupled with silylated thymine in the presence of TMS-triflate and the resulting anomeric mixture of nucleotides could be separated chromatographically and after desilylation using TBAF in THF the 3′-C-dialkylphosphono nucleosides 7 and 8 were obtained.  相似文献   

9.
Abstract

New analogues of antiviral agents 9-(2, 3-dihy-droxyproply) adenine (DHPA, 1a.) and 9-(2-hydroxyethoxymethyl) guanine (acyclovir, Ib) - compounds Ic and Id were prepared and their biological activity was investigated. Racemic 1, 2, 4-butanetriol (2) was converted to the corresponding benzylidene derivative (3a) by acetalation with benzalde-hyde and triethyl orthoformate. Acetal 3a and p-toluene- sul-fonyl chloride in pyridine gave the corresponding p-toluenes fonate 3b. Alkylation of adenine 5a via sodium salt of 5a with 3b in dimethylformamide or in the presence of tetra-n-butylammonium fluoride in tetrahydrofuran gave intermediate 6a. Reaction of 2-amino-6-chloropurine (5b) with 3b effected by K2CO3 in dimethylsulfoxide gave compound 6b and a smaller amount of 7-alkylated proauct 7. A similar transformation catalyzed by tetra-n-butylammonium fluoride afforded only intermediate 5b. Acid-catalyzed de-protection (hydrolysis) of 6b and 6a gave the title compounds Ic and Id. The S-enantiomer of Ic was deaminated with adenosine deaminase. Our results argue against the presence of a methyl group-binding site of adenosine deaminase. Compounds Ic and Id exhibited little or no activity in antiviral assays with several DNA and RNA viruses.  相似文献   

10.

Nucleophilic displacement of the tosyloxy group in 7-(2-hydroxy-3-p-toluenesulfonyloxypropyl)theophylline (1) with azide anion afforded 7-(3-azido-2-hydroxypropyl)theophylline (2). Reduction of the 3-azido group in 2 with Ph3P/Py/NH4OH afforded the 3-amino derivative 4, alternatively obtained by regioselective amination of 7-(2,3-epoxypropyl)theophylline (3). Selective acetylation of 4 gave the N-acetyl derivative 5. 1,3-Dipolar cycloaddition of the azide group in 2 with N1-propargyl thymine (6) afforded the regioisomeric triazole 7.  相似文献   

11.
The chemical synthesis of some 4-substituted 1-[1-(2-hydroxyethoxy)methyl-1,2,3-triazol-(4 and 5)-ylmethyl]-1H-pyrazolo[3,4-d]pyrimidines 12a,b, 13a,b and 14–23 as acyclic nucleosides is described. Treatment of (2-acetoxyethoxy)methylbromide with sodium azide afforded (2-acetoxyethoxy)methylazide 9. The heterocycles 6a,b were alkylated, separately, with propargyl bromide to obtain, regioselectively, 4-(methyl and benzyl)thio-1-(prop-2-ynyl)-1H-pyrazolo[3,4-d]pyrimidines 7a,b. These N1-alkylated products were condensed with compound 9 via a 1,3-dipolar cycloaddition reaction to obtain, after separation and deprotection, 1,4 and 1,5-regioisomers 12a,b and 13a,b. The deprotected acyclic nucleosides 12a and 13a served as precursors for the preparation of 4-amino (14 and 15), 4-methylamino (16 and 17), 4-benzylamino (18 and 19), 4-methoxy (20 and 21) and 4-hydroxy (22 and 23) analogues. Compounds 7a,b and all deprotected acyclic nucleosides were evaluated for their inhibitory effects against the replication of HIV-1(IIIB) and HIV-2(ROD) in MT-4 cells and for their anti-tumor activity. No marked activity was found. However, initial evaluation of 6a,b, 7a,b, 12a,b, 13a,b and 14–23 showed that compound 7b has marked activity against M. tuberculosis.  相似文献   

12.
Abstract

In view of biological activities of tiazofurin and azido or aminosugar nucleosides, novel azido- and amino-substituted tiazofurin derivatives (1 and 2) were efficiently synthesized starting from 1,2;5,6-di-O-isopropylidene-D-glucose.  相似文献   

13.
Recently, β-L-nucleoside analogues have emerged as a new class of sugar modified nucleosides with potential antiviral and/or antitumoral activity. As a part of our ongoing research on this topic, we decided to synthesize 5-CF3-β-L-dUrd (7), the hitherto unknown L-enantiomer of Trifluridine, an antiherpetic drug approved by FDA but only used in topical applications due to concomitant cytotoxicity. 5-CF3-β-L-dUrd (7) as well as some other related L-nucleoside derivatives were stereospecifically prepared and tested in vitro against viral (HSV-1 and HSV-2) and human thymidine kinases (TK).  相似文献   

14.
Abstract

In our continuing studies of the Friedel-Crafts glycosylation of preformed heterocycles, we have observed that while the SnCl4 catalyzed glycosylation of methyl 4-(formylamino)thiophene-3-carboxylate (5) gives readily the C-nucleosides 7b and 7a, the corresponding Et2AlCl catalyzed reaction gives exclusively the N-nucleoside 11. These nucleosides can be further elaborated into the bicyclic thieno[3,4-d]-pyrimidine system. Similarly, methyl 4-(formylamino)furan-3-carboxylate (19) gave the expected C-nucleosides 2Ob and 2Oa upon glycosylation in the presence of SnCl4. However, these nucleosides could not be converted into the furo[3,4-d]pyrimidine system. Interestingly, several of the N-formamido compounds exhibit pronounced rotational isomerism, which was demonstrated by 1H NMR spectroscopy  相似文献   

15.
Abstract

3-Bromo-5-(2-hydroxyethylthiomethyl)pyridine (7) was synthesized by reaction of 3-bromo-5-chloromethylpyridine hydrochloride (6) with the mono sodium salt of 2-mercaptoethanol. 3-Bromo-5-hydroxymethylpyridine (10) was, after protection as a silyl ether, converted to the 3-carboxy analogue using BuLi and CO2. After deprotection with NH4F, the alcohol function was chlorinated using SOCl2. Finally, attachment of the acyclic chain and ammonolysis gave the acyclic nicotinamide nucleosides. Treatment of the latter compounds with Lawesson's reagent gave the thioamide analogues. All compounds were identified by NMR and DCI-MS. The acyclic pyridine C-nucleosides were evaluated against a series of tumor-cell lines and a variety of viruses. No marked biological activity was found.  相似文献   

16.
Regioselective alkylation of 5-(3-chlorobenzo[b]thien-2-yl)-4H-1,2,4-triazole (1) with hydroxy alkylating agents 2, 3, 13, and the 2,3-O-isopropylidene-1-O-(p-tolylsulfonyl)-glycerol (10) afforded the corresponding S-alkylated derivatives 6, 7, 11, and 14 under both conventional and microwave irradiation conditions; bentonite as a solid support gave better results, with no change in regioselectivity. A facile intramolecular dehydrative ring closure of 6, 7, 11, and 14 using K2CO3 in DMF afforded the corresponding fused triazolo-thiazines and thiazolo-triazole 17–19. The isopropylidenes and acetyl derivatives of the products were prepared.  相似文献   

17.
Abstract

Reactions of α, α′-dichloroazo compounds 2 with SbCl5 gave 1-(chloroalkyl)-1-aza-2-azoniaallene salts 3 as reactive intermediates. Cycloadditions of 3 with the ribofuranosyl cyanide 4 afforded the β-D-ribofuranosyl-1,2,4-triazolium salts 5, which rearranged spontaneously to salts 6. Hydrolysis of 6 gave the 1,2,4-triazole C-nucleosides 7, which yielded the free nucleosides 8 after deblocking. Analogously, 12 was prepared from the cycloaddition of 4 with the α-chloroazo compound 10 in the presence of SbCl5. Deblocking of 12 with sodium methoxide afforded 13. Compounds 8a,b,e,f and 13 were tested against HIV-1, HIV-2, HSV-1 and HSV-2 and were found to be inactive.  相似文献   

18.
Abstract

The deamination of eight kinds of racemic carbocyclic adenine nucleosides by adenosine deaminase under high-pressure (400 MPa) was examined and the result was compared with that obtained from the reaction under atmospheric pressure. The deamination of all carbocyclic nucleosides irrespective to their ring size of carbocycles was facilitated remarkably high-pressure. The reaction of three and five membered carbocyclic nucleosides resulted in the very high enantioselectivity both under high- and atmospheric Plessure whereas the enantioselectivity of six membered carbocyclic nucleosides was suppressed under high-pressure. However, the enantioselectivity of four membered nucleosides was low under both conditions.

  相似文献   

19.
Abstract

Appropriate protected deoxyguanosine and deoxyuridine derivatives, respectively activated at 06 and. 04 positions by the 3-nitro 1,2,4-triazol 1-yl group, were reacted with ethylene gtycol, ethylenediamine or ethanolamine to give monoalkylated nucleosides or cross-linked dimers or cross-linked dinucleosides.  相似文献   

20.
The 3-deoxy-3-fluoro-6-S-(2-S-pyridyl)-6-thio-β-d-glucopyranosyl nucleoside analogs 7 were prepared via two facile synthetic routes. Their precursors, 3-fluoro-6-thio-glucopyranosyl nucleosides 5a-e, were obtained by the sequence of deacetylation of 3-deoxy-3-fluoro-β-d-glucopyranosyl nucleosides 2a-e, selective tosylation of the primary OH of 3 and finally treatment with potassium thioacetate. The desired thiolpyridine protected analogs 7a-c,f,g were obtained by the sequence of deacetylation of 5a-c followed by thiopyridinylation and/or condensation of the corresponding heterocyclic bases with the newly synthesized peracetylated 6-S-(2-S-pyridyl) sugar precursor 13, which was obtained via a novel synthetic route from glycosyl donor 12. None of the compounds 6 and 7 showed antiviral activity, but the 5-fluorouracil derivative 7c and particularly the uracil derivative 7b were endowed with an interesting and selective cytostatic action against a variety of murine and human tumor cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号