首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

5-Substituted 6-azauracils were alkylated with (2-acetoxyethoxy)methyl bromide to give protected acyclic nucleosides which were deprotected to afford acyclonucleosides of 5-substituted 6-azauracils. Their structures have been established by the UV and 1H-NMR spectra and by elemental analysis.  相似文献   

2.
Abstract

Acyclic nucleoside analogues of antiviral DHPA and HPMPA have been prepared. Coupling of silylated 6-azauracils with benzyl glycidyl ether and stannic chloride followed by the deprotection with boron trichloride gave 1-(2,3-dihydroxypropyl)-6-azauracils (3) in good overall yields. Reaction of silylated 6-azauracil and epichlorohydrin with or without catalytic stannic chloride afforded 1-(2-chloro-3-hydroxypropyl)-6-azauracil (4a) and 1-(3-chloro-2-hydroxypropyl)-6-azauracil (6a) respectively. Coupling of silylated 6-azaisocytosine under the same reaction conditions provided 1-(2,3-dihydroxypropyl)-6-azaisocytosine (9) and 1-(2-chloro-3-hydroxypropyl)-6-azaisocytosine (10) respectively. None of the compounds exhibited significant antiviral activity against herpes simplex viruses.  相似文献   

3.
Abstract

Tricyclic (T) analogues of acyclovir (ACV, 1) and ganciclovir (GCV, 2) carrying the 3,9-dihydro-9-oxo-5H-imidazo[1,2-a]purine system [i.e., 6-(4-BrPh)TACV, 5 and 6-(4-BrPh)TGCV, 6] were transformed into 6-[(4′-R2)-4-biphenylyl] derivatives of TACV (79) and TGCV (1012) by Suzuki cross coupling with 4-substituted phenylboronic acids. Compound 11 (R2 = CH2OH) showed a high (~1000) selectivity index against herpes simplex virus type 1 (HSV-1) together with advantageous fluorescence properties (emission in visible region, little overlap with absorption and moderate intensity).  相似文献   

4.
Abstract

A series of antiherpetic 5-substituted 2′-deoxyuridine derivatives (i. e. BVDU) and guanine derivatives (i. e. ganciclovir) have been evaluated for their cytostatic activity against murine mammary carcinoma FM3A cell lines that are deficient in cytosol thymidine kinase, but transfected by the herpes simplex virus type 1 (HSV-1)- or type 2 (HSV-2)-specified thymidine kinase gene. Most compounds were endowed with a markedly higher cytostatic activity against the HSV TK gene-transfected tumor cells than against wild-type tumor cells. The principal target for cytostatic activity of the BVDU derivatives proved thymidylate synthase, whereas the guanine derivatives inhibited HSV TK gene-transfected tumor cell proliferation by competing with cellular DNA polymerase(s) and subsequent incorporation into the cellular genome.

  相似文献   

5.
Abstract

Various 5-substituted 1-(2-deoxy-2-C-methylene-4-thio-β-D-erythropentofuranosyl)uracils (4′-thioDMDUs) were synthesized from D-glucose via sila-Pummerer-type glycosylation. All of the β-anomers of 5-substituted 4′-thioDMDU, except the 5-hydroxyethyl derivative, showed potent anti-HSV-1 activity (ED50 = 0.016–0.096 μg/mL). 5-Ethyl- and 5-iodo-4′-thioDMDUs were also active against HSV-2 (ED50 = 0.17 and 0.86 μg/mL, respectively). 5-Bromovinyl-4′-thioDMDU was particularly active against VZV (ED50 = 0.013 μg/mL).

  相似文献   

6.
Abstract

The preparation of 6 substituted pyrimidine nucleosides has received limited attention and undoubtedly reflects the difficulty in synthesizing nucleosides of this type. Condensation of & substituted pyrimidines with suitable sugar derivatives leads to the formation of mixtures of N3 and N1 nucleosides where the N3 isomer usually predominates1. This is exemplified by the direct ribosylation of the silyl derivative of 6-methyl-thiouracil, which furnished only the N3 ribonucleoside2. Ueda and coworkers' adcfessed this problem with moderate success. When 5′- O-acetyl-2′,3′-O-isopropylidine5bromouridine c1) was reacted with cyan- ide ion, a Michael-type addition occurred at C6 with concomitant dehycfo- brominatim to give the corresponding Gcyanowidine in quantitative yield. Treatment of 1(Scheme 1) with benzyl mercaptan, however furnished a 1:1 mixture of the C6 and C5 isomers 2 and 3 grespectively4. Attempts to alter the course of this reaction so that 2 predominated met with little success. It is worth mentioning that in ouFhands when this reaction was scaled-up, 3 predominated (2:3=1:4). Also the use of other sulfur nucleophiles, such as SEt, afforded only the C5-substituted derivative3. Thus, a new synthetic approach was sought which would furnish only the desired C6-substituted isomer and in reasonable yield.  相似文献   

7.
Abstract

Abstract. A number of 5-substituted constrained acyclic analogs of cytidine and uridine have been prepared in which the glycosyl torsion angle is constrained in the anti conformation. Compounds 2a-c, 3a-c, 4, 5 and 6 were tested for activity against HCMV and HSV-1. Compounds 2a and 2b showed moderate activity against HCMV. Compound 2c exhibited a weak inhibitory activity against HSV-1. Compounds 2a, 3a, 4, 5, 6, 8, and 9 were screened for their anti-HIV or antitumor activity. None of them were active against HIV. However, compound 9 showed a 50% inhibition on MDA-MB-231/ATTC breast cancer cell growth at a concentration of 0.15 μM.  相似文献   

8.
Abstract

A number of 6-substituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine and 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3-d]pyrimidine derivatives related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for their biological activity. Treatment of 2-amino-5-bromo-3,4-dicyanopyrrole (2) with triethylorthoformate, followed by alkylation via the sodium salt method with either 2-(acetoxyethoxy)methyl bromide or (1,3-diacetoxy-2-propoxy)methyl bromide, furnished the corresponding N-substituted pyrroles 3a and 3b. These compounds were then smoothly converted to the requisite deprotected 4-amino-6-bromopyrrolo[2,3-d]-pyrimidine-5-carbonitriles 5a and 5b (toyocamycin analogs) by methanolic ammonia. The 6-amino-derivatives were obtained by a displacement of the bromo group with liquid ammonia. Conventional functional group transformations involving the 5-cyano group furnished the 5-carboxamide (sangivamycin) and 5-thioamide analogs. Compounds substituted at the 7-position with a ribosyl moiety were active against human cytomegalovirus (HCMV) at micromolar concentrations, but the apparent activity was not selective. The 7-ribosyl compounds also had no activity against human immunodeficiency virus (HIV), though they were all cytotoxic. The new compounds were also evaluated against HCMV, herpes simplex virus type I (HSV-1), HIV, and also for their ability to inhibit the growth of L1210 murine leukemic cells in vitro. None of these compounds with (2-hydroxyethoxy)methyl substituents or 7-(1,3-dihydroxy-2-propoxy)methyl substituent at N-7 showed significant cytotoxicity toward L1210, or toward uninfected human foreskin fibroblasts (HFF cells), and KB cells. Nor were they cytotoxic in human lines CEM or MT2. Only compound 4a was found to be active against HCMV, having an IC50 of 32 μM.  相似文献   

9.
Abstract

A number of pyrimido[1, 6-c][1, 3]oxazine and -oxazepine derivatives, mimicry analogs of anti-constrained acyclic thymidine, have been prepared via treatment of lithiated 5, 6-dimethyl-2, 4-dimethoxypyrimidine with benzylchloromethyl ether or oxiran to furnish 2, 4-dimethoxy-6-(1-benzyloxyethyl)-S-methylpyrimidine (2) and 2, 4-dimethoxy-6-(1-hydroxypropyl)-5-methylpyrimidine (8), respectively. Debenzylation of 2 afforded 2, 4-dimethoxy-6-(1-hydroxyethyl)-5-methylpyrimidine (3). Chloromethylation of 3 and 8 with paraformaldehyde and gaseous hydrogen chloride produced reactive chloromethyl ether intermediates which were converted to the cyclized products 9-methyl-(1H, 2H, 4H, 7H)-pyrimido[1, 6-c][1, 3]-oxazine (5) and -oxazepine (9)-6, 8-dione, respectively. By using selenium dioxide, allylic oxidation of 5 and 9 afforded the target compounds, a racemic mixture of (±)1-hydroxy-9-methyl-(1H, 2H, 4H, 7H)-pyrimido[1, 6-c][1, 3]-oxazine (6) and -oxazepine (10)-6, 8-dione, respectively. Compounds 5, 6, 7, 9, and 10 were evaluated for activity against human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). All of these compounds were inactive.  相似文献   

10.
Abstract

A number of acyclic nucleosides have been prepared. 5-substituted-6-azauracils were persilylated with HMDS and then alkylated with aliphatic side chains e.g., (2-acetoxyethoxy)methyl bromide, 1,3-dibenzuloxy-2-chloromethoxypropane, (1-benzyloxy-3-phthalimido-2-propoxy)methyl chloride, and 1-benzyloxy-2-chloro-methoxybutane to yield protected acyclic nucleosides which were deprotected by Lewis acid or palladium to give various 6-azauracil acyclonucleosides.  相似文献   

11.
Analogs of (E)-5-(2-bromovinyl)-2 ′-deoxycytidine (BrVdCyd) (1) by substitution at N4 were synthesized to impart resistance against deamination. The anti-HSV-1 activity and solution conformation of these analogs were determined. N4-Acetyl-BrVdCyd (2) was a potent inhibitor of HSV-1 replication whereas N4-propanoyl-BrVdCyd (3) had good activity and N4-Butanoyl-BrVdCyd (4) had only low activity against HSV-1 replication. N4-Methyl-BrVdCyd (5) was devoid of activity against HSV-1.  相似文献   

12.
Abstract

5-Mercapto-6-azauracil (I) reacted in aqueous medium with ethyl α-haloalkanoates giving 5-[alkyl-(ethoxycarbonyl)methyl]mercapto-6-azauracils (II). Their 2,4-bis(trimethylsilyloxy) derivatives (III) were condensed with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of anhydrous stannic chloride to afford the corresponding blocked nucleosides (IV). Under the action of sodium methoxide, the derivatives IV were debenzoylated with the formation of the title compounds (V).  相似文献   

13.
Abstract

2′, 3′-Didehydro-2′, 3′-dideoxyisoguanosine (2) and 2′, 3′- dideoxyisoguanosine (3) have been synthesized by utilizing the Corey-Winter approach starting from isoguanosine. The 6-amino and 5′-hydroxy biprotected isoguanosine derivative was converted to the corresponding 2′, 3′- thionocarbonate, which was heated with triethyl phosphite to afford the 2′,3′- olefinic product. Either a tert-butyldimethylsilyl or a 4, 4′-dimethoxytrityl group was used in the protection of 5′-hydroxy function. Compounds 2 and 3 were found inactive against human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), and herpes simplex virus type 1 (HSV-1).

  相似文献   

14.
Abstract

Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a–5c) and 2,6-diaminopurines (5d–5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8–10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

15.
Abstract

The synthesis of 9-[1-(2-hydroxyethoxy)-3-hydroxypropyl]guanine (3a), its thia-congener (3b) and prodrugs (4a,b) was accomplished by paths involving Michael-type addition. The new compounds were found to be inactive against herpes simplex type 1 (HSV-1) and type 2 (HSV-2), human cytomegalovirus (CMV) and varicella-zoster virus (VZV), and unreactive as substrates for HSV-1 thymidine kinase phosphorylation.  相似文献   

16.
A group of unnatural 1-(2-deoxy-beta-D-ribofuranosyl)-2,4-difluorobenzenes having a variety of C-5 two-carbon substituents [-C...C-X, X = I, Br; -C...CH; (E)-CH=CH-X, X = I, Br; -CH=CH2; -CH2CH3; -CH(N3) CH2Br], designed as nucleoside mimics, were synthesized for evaluation as anticancer and antiviral agents. The 5-substituted (E)-CH=CH-I and -CH2CH3 compounds exhibited negligible cytotoxicity in a MTT assay (CC50 = 10(-3) to 10(-4)M range), relative to thymidine (CC50 = 10(-3) to 10(-5)M range), against a variety of cancer cell lines. In contrast, the C-5 substituted -C...C-I and -CH(N3)CH2Br compounds were more cytotoxic (CC50 = 10(-5) to 10(-6)M range). The -C...C-I and -CH2CH3 compounds exhibited similar cytotoxicity against non-transfected (KBALB, 143B) and HSV-1 TK+ gene transfected (KBALB-STK, 143B-LTK) cancer cell lines expressing the herpes simplex virus type 1 (HSV-1) thymidine kinase gene (TK+). This observation indicates that expression of the viral TK enzyme did not provide a gene therapeutic effect. The parent group of 5-substituted compounds, that were evaluated using a wide variety of antiviral assay systems [HSV-1, HSV-2, varicella-zoster virus (VZV), vaccinia virus, vesicular stomatitis, cytomegalovirus (CMV), and human immunodeficiency (HIV-1, HIV-2) viruses], showed that this class of unnatural C-aryl nucleoside mimics are inactive and/or weakly active antiviral agents.  相似文献   

17.
Abstract

A group of 1-[(2-hydroxyethoxy)methyl]- (12) and 1-[(1,3-dihydroxy-2-propoxy)methyl]- (13) derivatives of 2,4-difluorobenzene possessing a variety of C-5 substituents (R = Me, H, I, NO2) were designed with the expectation that they may serve as acyclic 5-substituted-2′-deoxyuridine (thymidine) mimics. Compounds 12 and 13 (R = Me, H, I) were inactive as anticancer agents (C50 = 10?3 to 10?4 M range), whereas the 5-nitro compounds (12d, 13d) exhibited weak-to-moderate cytotoxicity (CC50 = 10?5 to 10?6 M range) against a variety of cancer cell lines. All compounds prepared (12a-d, 13a-d) were inactive as antiviral agents in a broad-spectrum antiviral screen that also included the human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

18.
Tricyclic (T) analogues of acyclovir (ACV, 1) and ganciclovir (GCV, 2) carrying the 3,9-dihydro-9-oxo-5H-imidazo[1,2-a]purine system [i.e., 6-(4-BrPh)TACV, 5 and 6-(4-BrPh)TGCV, 6] were transformed into 6-[(4'-R2)-4-biphenylyl] derivatives of TACV (7-9) and TGCV (10-12) by Suzuki cross coupling with 4-substituted phenylboronic acids. Compound 11 (R2 = CH2OH) showed a high (approximately 1000) selectivity index against herpes simplex virus type 1 (HSV-1) together with advantageous fluorescence properties (emission in visible region, little overlap with absorption and moderate intensity).  相似文献   

19.
Abstract

Reactions of α, α′-dichloroazo compounds 2 with SbCl5 gave 1-(chloroalkyl)-1-aza-2-azoniaallene salts 3 as reactive intermediates. Cycloadditions of 3 with the ribofuranosyl cyanide 4 afforded the β-D-ribofuranosyl-1,2,4-triazolium salts 5, which rearranged spontaneously to salts 6. Hydrolysis of 6 gave the 1,2,4-triazole C-nucleosides 7, which yielded the free nucleosides 8 after deblocking. Analogously, 12 was prepared from the cycloaddition of 4 with the α-chloroazo compound 10 in the presence of SbCl5. Deblocking of 12 with sodium methoxide afforded 13. Compounds 8a,b,e,f and 13 were tested against HIV-1, HIV-2, HSV-1 and HSV-2 and were found to be inactive.  相似文献   

20.
The synthesis of dideoxy-6-azathymidine 4′-thionucleoside 1-(2,3-dideoxy-4-thio-β-D-erythro-pentofuranosyl)-(6-azathymidine) (2), and the L-nucleoside, 1-(4-thio-β-L-erythro-pentofuranosyl)-(6-azathymidine) (3) and their evaluation against a wide panel of antiviral assays are described. The L-thionucleoside (3) was devoid of antiviral activity. The dideoxy-thionucleoside (2) was moderately active against vaccinia virus (VV) and the herpes simplex virus strains HSV-1 (strain KOS) and HSV-2 (strain G) (MIC 12 μM) and retained inhibitory activity vs a thymidine kinase-deficient strain HSV-1/TK, suggesting that (2) is not dependent on viral TK-catalysed phosphorylation for antiviral activity and/or may use an alternative metabolic activation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号