首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Cholic acid, cholesterol, several polyamines and polyethylene glycols were conjugated to antisense oligonucleotides targeted to human or murine intercellular adhesion molecule-1 (ICAM-1) mRNA to study their effects on cellular absorption.  相似文献   

2.
BackgroundOsmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes.Scope of reviewThe present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs.Major conclusionsMAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation.General significanceMAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.  相似文献   

3.
Curcumin (CUR) is a natural yellow pigment from turmeric with extensive bioactivities. However its relatively poor solubility limited its absorption and bioavailability. In this study, a novel series of CUR-peptide conjugates were designed and synthesized as PepT1-mediated transport drugs and their solubility, cellular uptakes and anti-tumor activities were evaluated. Ten compounds showed better water solubility than CUR due to the dipeptide moiety. Compared with CUR, compound 5e exhibited the slightly better activity and 5d showed the similar activity with CUR. Besides, compounds 5d and 5e performed higher cellular uptakes in Caco-2 cell and dose-dependently inhibited by the addition of PepT1 typical substrate glycylsarcosine (Gly-Sar). Compound 5d and 5e have improved the absorption of CUR by PepT1-mediated without affected the activity. These new dipeptide conjugates of CUR may serve as promising lead compounds for future drug development.  相似文献   

4.
Polynuclear platinum(II) complexes represent a class of potential anticancer agents that have shown promising pharmacological properties in preclinical studies. The nature of cellular responses induced by these complexes, however, is poorly understood. In this research, the cellular responses of human ovarian cancer COC1 cells to dinuclear platinum(II) complexes {[cis-Pt(NH3)2Cl]2L1}(NO3)2 (1) and {[cis-Pt(NH3)2Cl]2L2}(NO3)2 (2) (L1 = α,α′-diamino-p-xylene, L2 = 4,4′-methylenedianiline) has been studied using cisplatin as a reference. The effect of platinum complexes on the proliferation, death mode, mitochondrial membrane potential, and cell cycle progression has been examined by MTT assay and flow cytometry. The activation of cell cycle checkpoint kinases (CHK1/2), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) of the cells by the complexes has also been analyzed using phospho-specific flow cytometry. Complex 1 is more cytotoxic than complex 2 and cisplatin at most concentrations; complex 2 and cisplatin are comparably cytotoxic. These complexes kill the cells through an apoptotic or apoptosis-like pathway characterized by exposure of phosphatidylserine and dissipation of mitochondrial membrane potential. Complex 1 shows the strongest inductive effect on the morphological changes of the cells, followed by cisplatin and complex 2. Complexes 1 and 2 arrest the cell cycle in G2 or M phase, while cisplatin arrests the cell cycle in S phase. The influence of these complexes on CHK1/2, ERK1/2, and p38 MAPK varies with the dose of the drugs or reaction time. Activation of phospho-ERK1/2 and phospho-p38 MAPK by these complexes is closely related to the cytostatic activity. The results demonstrate that dinuclear platinum(II) complexes can induce some cellular responses different from those caused by cisplatin.  相似文献   

5.
6.
Abstract

Liposomes loaded with the rhenium compound (bis-dimethylsulfoxido-cis-tetrachlorodi-μ-pivalatodirhenium(III) (cis–Re2((CH3)3CCOO)2Cl4?2DMSO, I) and cisplatin in the molar ratio of 4:1 as well as those loaded only with I were synthesized and characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering and electronic absorption spectroscopy. The relative stability of liposomes loaded with I is reflected by a minimal change in the electronic absorption spectra over a period of 8 days whereas the stability of those loaded with both drugs is lower, which we ascribe to the formation of new Re-Pt species inside the liposomes. Furthermore, the investigations of the co-encapsulation effects on the anticancer activity of the Re-Pt system were undertaken. Importantly, the co-encapsulated liposomes exhibit synergistic or additive anticancer activities in vivo, e.g. introduction of these liposomes into tumor-bearing rats demonstrated their antianemic, nephro- and hepato-protecting effects. These liposomes, which are active in cancer treatment, protect the dirhenium compounds from hydrolysis and preserve the biological properties of the Re-Pt hybrid. This study reveals the importance of combined therapy in nanotechnology and medicine.  相似文献   

7.
[Purpose] Dehydroepiandrosterone (DHEA) administration reportedly recovers osteoporosis, a bone disorder associated with bone deficiency in postmenopausal women. However, the physiological mechanism of DHEA in osteoporosis remains elusive, especially in terms of intestinal calcium absorption. Therefore, we investigated the effect of DHEA administration on calcium absorption in ovariectomized (OVX) female rats using an estrogen receptor antagonist.[Methods] Female Sprague-Dawley rats (n=23, 6 weeks old) were randomized into three groups: OVX control group (OC, n=7), OVX with DHEA treatment group (OD, n=8), and OVX with DHEA inhibitor group (ODI, n=8) for 8 weeks.[Results] Intestinal calcium accumulation, as well as the rate of absorption, demonstrated no significant differences during the experimental period among investigated groups. The bone mineral density (BMD) of the tibia at the proximal metaphysis was higher in the OD group than that in the OC group (p<0.05); however, BMD of the ODI group showed no significant difference from investigated groups. Furthermore, the BMD of the tibia at the diaphysis did not significantly differ among these groups.[Conclusion] We revealed that DHEA administration does not involve intestinal Ca absorption, although this treatment improves BMD levels in OVX rats. These observations indicate that the effect of DHEA on the bone in postmenopausal women is solely due to its influence on bone metabolism and not intestinal calcium absorption.  相似文献   

8.
Abstract

The synthesis of BODIPY conjugated cationic lipids was achieved in three steps from 3-bromopropane-1,2 diol as the starting material. These compounds were evaluated for their ability to enhance cellular uptake of the antisense oligonucleotides.  相似文献   

9.
BackgroundThis study was to observe the non-heme iron absorption and biological utilization from typical whole Chinese diets in young Chinese healthy urban men, and to observe if the iron absorption and utilization could be affected by the staple food patterns of Southern and Northern China.ResultsNon-heme iron intake values overall, and in the rice and steamed buns groups were 12.8 ±2.1, 11.3±1.3 and 14.3±1.5 mg, respectively; the mean 57Fe absorption rates were 11±7%, 13±7%, and 8±4%, respectively; and the mean infused 58Fe utilization rates were 85±8%, 84±6%, and 85±10%, respectively. There was no significantly difference in the iron intakes, and 57Fe absorption and infused 58Fe utilization rates between rice and steamed buns groups (all P>0.05).ConclusionWe present the non-heme iron absorption and utilization rates from typical whole Chinese diets among young Chinese healthy urban men, which was not affected by the representative staple food patterns of Southern and Northern China. This study will provide a basis for the setting of Chinese iron DRIs.  相似文献   

10.
BackgroundIn eukaryotic cells, molecular trafficking between the nucleus and cytoplasm is a highly regulated process related to cellular homeostasis and cellular signaling. However, various cellular stresses induce the perturbation of conventional nucleocytoplasmic transport pathways, resulting in the nucleocytoplasmic redistribution of many functional proteins.Scope of reviewWe describe the recent insights into the mechanism and functions of nuclear import of cytosolic chaperone HSP70 under stress conditions and the cellular distribution and functions of its co-chaperones.Major conclusionsHikeshi mediates the nuclear import of the molecular chaperone HSP70. A few of the regulators of the HSP70 chaperone system also accumulate in the nucleus under heat stress conditions. These proteins function collaboratively to protect cells from stress-induced damage and aid in the recovery of cells from stress.General significanceStudies on the regulation of nucleocytoplasmic transport under several cellular stresses should provide new insights into the fundamental principles of protein homeostasis (proteostasis) in both compartments, the nucleus and cytoplasm.  相似文献   

11.
AimsHuman plasma lipoproteins are known to contain various glycan structures whose composition and functional importance are starting to be recognized. We assessed N-glycosylation of human plasma HDL and LDL and the role of their glycomes in cellular cholesterol metabolism.MethodsN-glycomic profiles of native and neuraminidase-treated HDL and LDL were obtained using HILIC-UHPLC-FLD. Relative abundance of the individual chromatographic peaks was quantitatively expressed as a percentage of total integrated area and N-glycan structures present in each peak were elucidated by MALDI-TOF MS. The capacity of HDL to mediate cellular efflux of cholesterol and the capacity of LDL to induce cellular accumulation of cholesteryl esters were evaluated in THP-1 cells.ResultsHILIC-UHPLC-FLD analysis of HDL and LDL N-glycans released by PNGase F resulted in 22 and 18 distinct chromatographic peaks, respectively. The majority of N-glycans present in HDL (~70%) and LDL (~60%) were sialylated with one or two sialic acid residues. The most abundant N-glycan structure in both HDL and LDL was a complex type biantennary N-glycan with one sialic acid (A2G2S1). Relative abundances of several N-glycan structures were dramatically altered by the neuraminidase treatment, which selectively removed sialic acid residues. Native HDL displayed significantly greater efficacy in removing cellular cholesterol from THP-1 cells as compared to desialylated HDL (p < 0.05). Cellular accumulation of cholesteryl esters in THP-1 cells was significantly higher after incubations with desialylated LDL particles as compared to native LDL (p < 0.05).ConclusionsN-glycome of human plasma lipoproteins reveals a high level of diversity, which directly impacts functional properties of the lipoproteins.  相似文献   

12.
摘要 目的:研究细胞内脂滴含量的变化对肥胖、糖尿病等代谢性疾病发生发展的影响。方法:建立高内涵脂滴三维成像和定量分析系统,获得脂滴三维动态表型参数,例如细胞内脂滴的总体积量、脂滴平均体积、单一细胞内脂滴平均数量等指标。选择HeLa、AML-12、COS-7和3T3-L1四种细胞系进行油酸、基因沉默、酶活性抑制剂的处理,量化处理后四种细胞内的脂滴数量与大小的表型差异。结果:在加入油酸情况下,细胞随油酸浓度增加而生成更多、更大的脂滴,但AML-12细胞只有展现增加脂滴数量的变化表型;在HeLa细胞中进行19种中性脂合成通路上关键基因的转录表达沉默,发现需要同时双敲降两种甘油三酯合成酶DGAT1和DGAT2才能显着降低细胞内脂滴总体积储存量,但在COS-7细胞中只需要单敲降DGAT1即可降低脂滴存量;进一步使用了DGAT1/2抑制剂处理四种细胞后,发现对抑制剂响应可区分为两类细胞分组(HeLa、AML-12与COS-7、3T3-L1)的脂滴存量表型差异,其原因是DGAT1和DGAT2的转录表达谱在这两类细胞分组中的不同。结论:建立了高内涵脂滴三维成像和定量分析系统,量化了四种细胞系的脂滴数量与大小的表型差异,揭示了细胞的脂滴脂储存方式与蛋白酶表达谱的关系。  相似文献   

13.
目的:探讨白藜芦醇对6-羟基多巴引起的细胞损伤的内在保护机制。方法:以SN4741细胞系为实验对象,分为对照组、6-羟基多巴处理组和白藜芦醇预处理、6-羟基多巴处理组组。MTT法测定细胞活性。Western blot检测细胞内DJ-1表达水平。ROS检测反映细胞的氧化应激水平和线粒体损伤情况。线粒体膜电位检测反映细胞线粒体功能。结果:白藜芦醇可以剂量依赖性方式提高6-OHDA诱导的SN4741细胞的存活率。白藜芦醇预处理显著逆转6-OHDA诱导的SN4741细胞DJ-1水平的下降,降低6-OHDA引起的氧化应激水平和线粒体损伤。结论:白藜芦醇预处理能够保护6-羟基多巴所致的SN4741细胞损伤,可能与提高DJ-1的表达,减轻细胞内的氧化应激水平,改善线粒体功能有关。  相似文献   

14.
BackgroundExtracellular surface protein disulfide isomerase-A1 (PDI) is involved in platelet aggregation, thrombus formation and vascular remodeling. PDI performs redox exchange with client proteins and, hence, its oxidation by extracellular molecules might alter protein function and cell response. In this study, we investigated PDI oxidation by urate hydroperoxide, a newly-described oxidant that is generated through uric acid oxidation by peroxidases, with a putative role in vascular inflammation.MethodsAmino acids specificity and kinetics of PDI oxidation by urate hydroperoxide was evaluated by LC-MS/MS and by stopped-flow. Oxidation of cell surface PDI and other thiol-proteins from HUVECs was identified using impermeable alkylating reagents. Oxidation of intracellular GSH and GSSG was evaluated with specific LC-MS/MS techniques. Cell adherence, detachment and viability were assessed using crystal violet staining, cellular microscopy and LDH activity, respectively.ResultsUrate hydroperoxide specifically oxidized cysteine residues from catalytic sites of recombinant PDI with a rate constant of 6 × 103 M−1 s−1. Incubation of HUVECs with urate hydroperoxide led to oxidation of cell surface PDI and other unidentified cell surface thiol-proteins. Cell adherence to fibronectin coated plates was impaired by urate hydroperoxide, as well as by other oxidants, thiol alkylating agents and PDI inhibitors. Urate hydroperoxide did not affect cell viability but significantly decreased GSH/GSSG ratio.ConclusionsOur results demonstrated that urate hydroperoxide affects thiol-oxidation of PDI and other cell surface proteins, impairing cellular adherence.General significanceThese findings could contribute to a better understanding of the mechanism by which uric acid affects endothelial cell function and vascular homeostasis.  相似文献   

15.
Abstract

The present paper deals with the synthesis of novel macrocyclic complexes of the type [MLX]X, where [(M?=?Co(II) (1), and Ni(II) (2) X?=?(Cl2)]. The complexes are synthesized by the reaction of ligand(L)diquinolineno[1,3,7,9]tetraazacyclododecine-7,15-ethane(14H,16H)-benzene with the corresponding metal salts. The synthesized complexes are thoroughly characterized by elemental analysis, FT-IR, 1H-NMR, Mass and electronic spectra. The complexes (1) and (2) were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cell (MCF-7). MTT cytotoxicity studies shows both the complexes are most effective. The binding properties of these complexes with calf thymus-DNA were studied by absorption, emission spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum undergoes bathochromic and hypochromic shifts. The absorption spectral results indicate that the intrinsic binding constant (Kb) are 4.8?×?105?M?1 for (1) and 3.9?×?105?M?1 for (2) respectively, suggesting that complex (1) binds more strongly to CT-DNA than complex (2). The viscosity measurement results revealed the viscosity of sonicated rod like DNA fragments increased when the complex was added to the solution of CT-DNA. The synthesized ligand and its metal complexes are screened for antibacterial and antifungal activities.  相似文献   

16.
BackgroundGastrodiae Rhizoma (Tianma), the dried tuber of Gastrodia elata Bl. (Orchidaceae), is listed as a top-grade herbal medicine in Shen-nong Ben-ts'ao Jing and has been used for treating headaches, dizziness, vertigo and convulsion. It has a neuroprotective effect and extends the lifespan in mouse models of Huntington's disease and Niemann-Pick type C disease. However, its effect on senescence remains unknown.PurposeThis study aimed to investigate the anti-aging effects and the underlying mechanism of Gastrodiae Rhizoma.MethodsD-galactose (D-gal)- and BeSO4-induced cellular senescence and senescence-associated β-galactosidase (SA-β-gal) activity were evaluated in SH-SY5Y and PC12 cells. D-gal–induced aging mice were used as an in vivo model. Animal behaviors including nesting and burrowing and Morris water maze were conducted. Neurogenesis in the hippocampus was assessed by immunohistochemistry and confocal microscopy, and the aging-related proteins were assessed by Western blot analysis. The potential neuritogenesis activity of the partially purified fraction of Gastrodiae Rhizoma (TM-2) and its major ingredients were investigated in PC12 cells.ResultsTM-2 could improve D-gal-induced learning and memory impairement by inhibiting oxidative stress, increasing hippocampal neurogenesis and regulating the SH2B1-Akt pathway. Moreover, N6-(4-hydroxybenzyl)adenine riboside (T1-11) and parishins A and B, three constituents of TM-2, had anti-aging activity, as did T1-11 and parishin A induced neuritogenesis.ConclusionOur data suggested that TM-2 slowed down D-gal-induced cellular and mouse brain aging. These results indicate that Gastrodiae Rhizoma has a beneficial effect on senescence. It may be used for neuroprotection and promoting neurogenesis.  相似文献   

17.
18.
19.
BackgroundThe modus operandi for an anti-cancer drug must allow for an efficient discrimination system between tumorigenic and non-tumorigenic cells. Targeting ER stress and mitochondrial function in cancer cells appears to be a suitable option, as these processes are dysregulated in tumor cells. AECHL-1, a novel triterpenoid, exhibits potent anticancer activity against an array of cancer cell lines however, its mechanism of action remains elusive.MethodsMolecular targets of AECHL-1 were investigated using breast adenocarcinoma cells MCF-7, MDA-MB-231 and mammary epithelial cell line MCF 10A in vitro and xenograft tumors in SCID mice in vivo. Western blotting, flow cytometry, and immunohistochemical studies were employed to delineate the molecular pathways.ResultsAECHL-1 caused a transient elevation of ER stress proteins along with a prolonged phosphorylation of eIF2α in breast cancer cells. This was accompanied by a simultaneous release of calcium from ER stores and subsequent mitochondrial accumulation. These effects could be reversed by using ER stress inhibitors. AECHL-1 brings about mitochondria mediated, caspase independent cell death via AIF in MCF-7 cells; MDA-MB-231 succumbed to caspase dependent extrinsic pathway. Xenograft studies closely echoed our in vitro results. AECHL-1 did not alter cellular and molecular parameters in MCF 10A.ConclusionThese findings reveal that, AECHL-1 targets the Achilles Heel of cancer cell, namely dysfunctional ER and mitochondria while being non toxic to normal parenchyma and can thus be further explored as a potential chemotherapeutic intervention.General significanceAggravation of ER stress by AECHL-1 uncovers a novel pathway for selective elimination of cancer cells.  相似文献   

20.
Objectives: Reports investigating the effects of antioxidants on obesity have provided contradictory results. We have previously demonstrated that treatment with the antioxidant N-acetylcysteine (NAC) inhibits cellular triglyceride (Tg) accumulation as well as total cellular monoamine oxidase A (MAOA) expression in 3T3-L1 mature adipocytes (Calzadilla et al., Redox Rep. 2013;210–218). Here we analyzed the role of NAC on adipogenic differentiation pathway.

Methods: Assays were conducted using 3T3-L1 preadipocytes (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC). We studied the effects of different doses of NAC (0.01 or 1?mM) on DC, to evaluate cellular expression of phospho-JNK½ (pJNK½), phospho-ERK½ (pERK½) and, mitochondrial expression of citrate synthase, fumarate hydratase and MAOA.

Results: Following the differentiation of preadipocytes, an increase in the expression levels of pJNK½ and pERK½ was observed, together with mitotic clonal expansion (MCE). We found that both doses of NAC decreased the expression of pJNK½ and pERK½. Consistent with these results, NAC significantly inhibited MCE and modified the expression of different mitochondrial proteins.

Discussion: Our results suggested that NAC could inhibit Tg and mitochondrial protein expression by preventing both MCE and kinase phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号