首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A selective metalation at the 6-CH3 over C-8 of 6-methylpurine derivative 6 was observed with softer counter cation (Na+ or K+) of the base, while the harder Li+ showed no selectivity. In the presence of N-fluorobenzenesulfonamide (NFSI), this property was utilized for the synthesis of 6-fluoromethylpurine derivatives 4 and 5 as potential toxins for suicide gene therapy.  相似文献   

2.
Five new derivatives of adenosine, N6-[(1-methylethyl)thiomethyl]-(1), N6-methyithiomethyl-(2), N6-phenylthiomethyl-(3), N6-[(3-amino-3-carboxypropyl)thiomethyl]-(4), and N6-[(2-amino-2-carboxyethyl)thiomethyl]adenosine (5), were synthesized and their cytokinin activity was tested in the Amaranthus betacyanin assay and the soybean callus growth.

1, 2, and 3 were active in the former assay and all five compounds were active in the latter assay. The activities of the compounds were, however, weaker than those of the reference derivatives, in which Sulfides were replaced by methylenes, N6-isopentyl-, N6-n-propyl-, N6-benzyl-, and N6-(5-amino-5-carboxypentyl)adenosine. This fact indicates that the sulfide structure introduced into the N6-side chains had the effect of reducing cytokinin activity.  相似文献   

3.
Abstract

We report an improved synthesis of N 6-(6-aminohexyl)FAD (1) using an efficient one-pot conversion of inosine to the N-trifluoroacetyl protected N 6-(6-aminohexyl)adenosine 3. The 5′-O-phosphorylated AMP derivative 4, activated as the imidazolide, was coupled with commercial sodium riboflavin phosphate by using 18-crown-6 in DMF.  相似文献   

4.
Abstract

The reactions of the 5-bromo-6-methyl-2′,3′-O-isopropylideneuridines 9 and 10 with a number of nucleophiles in hot DMF have been investigated. With acetate ion as the nucleophile, either the 5-acetoxy- (11,12) or the 6-acetoxymethyl- (15) products can be obtained in modest yield depending upon the exact reaction conditions. With nitrogen nucleophiles (aniline or p-methoxybenzylamine) reaction takes place at the 6-methyl carbon, whereas with sulfur nucleophiles (thiophenol, thioacetate) only the 5-substituted products are obtained.  相似文献   

5.
In this study, the in vitro effects of some sulfonamide derivatives, which are carbonic anhydrase inhibitors, on the enzymes activities of glucose-6-phosphate dehydrogenase, 6-phospho gluconate dehydrogenase and glutathione reductase were investigated. For this purpose, these three enzymes were purified from human erythrocytes. Purification procedure composed of four steps; preparation of the hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and gel filtration chromatography on Sephadex G-200. 5-(3α-Hydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α,12α-Dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α,7α,12α-Trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3), 5-(3α,Acetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (4), 5-(3α,7α,12α-Triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (5), 5-(3,7,12-Trioxo-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (6), acetazolamide, and dorzolamide were tested in this experiment. Compounds 3, 5, and dorzolamide showed inhibitory effects on the activity of 6-phosphogluconate dehydrogenase, and I50 values and Ki constants were calculated as 0.0601 mM, 0.00253 mM, and 1.41 mM and 0.0878 ± 0.0274 mM, 0.0042 ± 0.0009 mM, and 3.1446 ± 0.2081 mM, respectively. Glutathione reductase was also inhibited by 1 and 2. I50 values and Ki constants were 0.0471 mM and 0.0723 ± 0.0388 mM for 1 and 0.0045 mM and 0.0061 ± 0.0014 mM, for 2. If these sulfonamide derivatives are proposed as drugs, some of which are being used in glaucoma treatment such as acetazolamide and dorzolamide, these results should be taken into consideration concerning via these enzymes.  相似文献   

6.
ABSTRACT

The nematocidal activities of the fatty acid esters of d-allose were examined using the larvae of C. elegans. Among the fatty acid esters, 6-O-octanoyl-d-allose (3) showed significant activity. 6-O-octanoyl-d-glucose (5) showed no activity, indicating that the D-allose moiety is essential for the nematocidal activity of 3. A nonhydrolyzable alkoxy analog 6-O-octyl-d-allose (6) also showed activity equivalent to that of 3.  相似文献   

7.
This paper presents the results of synthesis and study of cytotoxicity and the anti-adenoviral activity of new N4-derivatives of 6-azacytidine and its α-L-glycopyranosyl analogues obtained by the simplified one-pot version of the silyl condensation method. The resulting acylated 4-methylmercapto-1,2,4-triazin-3(2Н)-one glycosides then underwent the amination and/or ammonolysis to provide 6-azacytidine glycoside analogues (2–6, 12, 15, 17) and compounds with modifications at both base and sugar fragments (11, 15). The evaluation of cytotoxicity and antiviral activity of new compounds against AdV5 showed high selectivity indexes for N4-methyl-6-azacytidine (2) and N,O-tetraacetyl-6-azacytidine (8). High anti-adenoviral activity of N4-methyl-6-azacytidine as well as very low cytotoxicity may suggest its further investigation as potential compound for the therapy of AdV infection.  相似文献   

8.
Abstract

N 6 ?(1-hydroxyguanidino)purine IIa, and its 9-β-D-ribonucleoside derivative IIb were prepared by reacting at room temperature 6-hydroxyadenine Ia and 6-hydroxyadenosine Ib, with 1-guanyl-3,5-dimethylpyrazole nitrate in DMF. Refluxing IIa and IIb in 95% ethanol gave N6?(1-hydroxyureido)purine and its ribonucleoside derivative respectively; the latter compound was also obtained by refluxing Ib with 1-guanyl-3,5-dimethylpyrazole nitrate in ethanol. The two base analogs were inactive against L1210 cells in vitro, but the nucleoside derivatives inhibited the growth of these cells by 50% at 5 × 10 -6 and 6 × 10?7 M respectively. Compound IIb, at 200 mg/kg/day × 5, increased the life span of L1210-bearing DBA/2N mice by 57%. Cytofluorometric determinations showed that IIb inhibited cell growth in the G2 phase of the cell cycle. also found to inhibit adenosine deaminase activity with a Ki = 3.47 μM.  相似文献   

9.
Abstract

Efficient methods for the synthesis of 6-methylpurine (3), 9-(2-deoxy-β-D-erythro-pentofuranosyl)-6-methylpurine (8), and 6-methyl-9-β-D-ribofuranosylpurine (5) are described. Methodology involving the (Ph3P)4Pd catalyzed cross-coupling reaction of CH3ZnBr with several different 6-chloropurine derivatives is described in high yield. This methodology now provides a facile and high-yielding synthesis of 8, which is needed in significant amounts for studies in cancer gene therapy.  相似文献   

10.
A useful route is described for obtaining Z and E unsaturated alkylating agents 3 and 4. Coupling 6-azauracils 5 and 6 with unsaturated alkylating agent followed by the deprotection with H+ resin gave acyclonucleosides 11–14 in good overall yields. Unsaturated acyclonucleosides phosphonates 19 and 20 were prepared using potassium carbonate as base and 4-bromobut-2-enyl diethyl phosphonate 16 as the alkylating agent. The introduction of a propargyl group at the N-3 position of acyclonucleosides 7, 8, 17, 18, 19, and 20 was achieved using potassium carbonate in DMF.  相似文献   

11.
Abstract

Reaction of the silylated 6-azauracil (2) with 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucose (3) gave 1-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-ß-D-glucopyranosyl)-6-azauracil (4), which gave the free nucleoside 5 on deblocking. Acetalation of 5 gave the monoacetal 6 which was oxidized into the ketone 7. Reduction of 7 gave the allo-nucleoside 9 which on hydrolysis afforded the free nucleoside 10. Alternatively, compound 10 was obtained from mesylation of 6 to give 8 followed by subsequent acetolysis and hydrolysis.  相似文献   

12.
Abstract

The metabolism of O6-propyl-carbovir and N6-propyl-carbovir, two selective inhibitors of HIV replication, has been evaluated in CEM cells. Both compounds were phosphorylated in intact cells to carbovir-5′-triphosphate. The metabolism of these two agents was inhibited by deoxycoformycin and mycophenolic acid, but not erythro-9-(2-hydroxy-3-nonyl)adenine. No evidence of the 5′-triphosphate of either compound was detected in CEM cells.  相似文献   

13.
AimsHyperglycemia-induced oxidative stress is implicated in pericyte apoptosis seen in diabetic retinopathy. The six mammalian Peroxiredoxins (PRDXs) comprise a novel family of antioxidative proteins that negatively regulate oxidative stress-induced apoptosis by controlling reactive oxygen species (ROS) levels.Main methodsSprague–Dawley rats were used to detect the retinal expressions of PRDXs1–6. Pig pericytes cultured in high-glucose medium were used to monitor the protective effect of PRDX5 and 6 against high-glucose-associated change. Recombinant PRDX5 and 6 proteins were linked to the Trans-Activating Transduction (TAT) domain from HIV-1 TAT protein for their efficient delivery into cells/tissues.Key findingsWe found higher expression of PRDX5 and 6 mRNAs and PRDX5 and 6 proteins in retina than the other Prdxs (Prdx1–4). Western blotting affirmed the intracellular presence of TAT-linked proteins and revealed the efficient transduction of TAT-HA-PRDX5 and 6 in these cells. Extrinsic supply of TAT-HA-PRDX5 and 6 proteins inhibited the oxidative stress-induced DNA damage after high-glucose exposure in pig pericytes. The cell survival and apoptosis assay revealed that extrinsic supply of TAT-HA-PRDX5 and 6 proteins was responsible for inhibiting hyperglycemia-induced pericyte apoptosis.SignificanceResults suggest that delivery of PRDX5 and 6 might protect hyperglycemia-induced pericyte loss to inhibit oxidative stress.  相似文献   

14.
Abstract

6-Methyluridine can be synthesized from 5′-O-(tert-butyl-dimethylsilyl)-6-iodo-2′,3′-O-isopropylideneuridine via palladiumcatalyzed cross-coupling with Me4Sn followed by deprotection. Application of this method for the synthesis of 6-phenyluridine was also carried out.  相似文献   

15.
BackgroundThe pentose phosphate pathway (PPP) has received significant attention because of the role of NADPH and R-5-P in the maintenance of cancer cells, which are necessary for the synthesis of fatty acids and contribute to uncontrollable proliferation. The HsG6PD enzyme is the rate-limiting step in the oxidative branch of the PPP, leading to an increase in the expression levels in tumor cells; therefore, the protein has been proposed as a target for the development of new molecules for use in cancer.MethodsThrough in vitro studies, we assayed the effects of 55 chemical compounds against recombinant HsG6PD. Here, we present the kinetic characterization of four new HsG6PD inhibitors as well as their functional and structural effects on the protein. Furthermore, molecular docking was performed to determine the interaction of the best hits with HsG6PD.ResultsFour compounds, JMM-2, CCM-4, CNZ-3, and CNZ-7, were capable of reducing HsG6PD activity and showed noncompetitive and uncompetitive inhibition. Moreover, experiments using circular dichroism and fluorescence spectroscopy showed that the molecules affect the structure (secondary and tertiary) of the protein as well as its thermal stability. Computational docking analysis revealed that the interaction of the compounds with the protein does not occur at the active site.ConclusionsWe identified two new compounds (CNZ-3 and JMM-2) capable of inhibiting HsG6PD that, compared to other previously known HsG6PD inhibitors, showed different mechanisms of inhibition.General significanceScreening of new inhibitors for HsG6PD with a future pharmacological approach for the study and treatment of cancer.  相似文献   

16.
Abstract

The 5-alkoxymethyl-2,2,7,8-tetramethyl-6-chromanols (II) are excellent antioxidants against autoxidising safflower oil (ASO), although not as good as 2,2,5,7,8-pentamethyl-6-chromanol (I), the model compound of -tocopherol. The aim of this work was to determine whether the rate of reaction of (II) with the radicals diphenylpicrylhydrazyl (DPP·) and galvinoxyl (ArO·) was directly proportional to their antioxidant activity against ASO. Compounds (II) reacted faster with DPP·. than with ArO·. but, in each case, slower than compound (I). The rates of reaction of I and II with both radicals followed the order I > II (R = H) > II (R = CH3) > II (R = other alkyls) and were directly proportional to their antioxidant activity against ASO.  相似文献   

17.
Abstract

Novel β-D-ribofuranosides having a 5-substituted imidazo [4,5-d] [1,3]thiazine ring, including the S6-congener 3 of oxanosine 2, were synthesized for screening their anticancer and antiviral activities.  相似文献   

18.
Abstract

Two approaches to the synthesis of the title compounds are described. In the first route, a reactive 5-oxo-6-methylene pyrimidine intermediate that is generated by treating the bis-acetylated or bis-benzoylated nucleosides 10 and 11 with sodium hydroxide undergoes intramolecular attack by the 5′-thiol group to afford the 5-hydroxy cyclonucleoside 12. In the second and higher yielding approach, the S5′,6-methano linkage is established by an internal allylic displacement reaction that occurs when the 5-bromo-6-methyl nucleoside 24 is treated with base. The conformational properties of S5′,6-methano-5′-thiouridine (3) and certain long-range spin-spin couplings observed in the NMR spectra of the intermediate nucleosides are discussed.  相似文献   

19.
(±)-Muscone (3-methylcyclopentadecanone) (8) was synthesized from ethyl 6-methyl-8-oxopentadecanedioate (1) in a 31.9% over-all yield. Ethylene ketal (2) of 1 was cyclized to the acyloin mixture (3) by the acyloin condensation. Reduction of 3 gave 9,9-ethylenedioxy-7-methylcyclopentadecane-1,2-diol (4) which afforded 1,2-ditosyloxy derivative (5). By detosylation according to the Tipson-Cohen procedure, 5 was converted to 9,9-ethylenedioxy-7-methylcyclopentadec-1-ene (6) which was hydrogenated to 8.  相似文献   

20.
BackgroundOsteoarthritis (OA) is an intractable degenerative disease of the whole joint, which is characterized by synovitis inflammation, cartilage damage, and chronic pain. Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) performs an important role in OA.PurposeWe aim to investigate avicularin to protect cartilage extracellular matrix degradation (ECM) and suppresses inflammation both in rat and human chondrocytes.Methods5-Ethynyl-2′-deoxyuridine (EdU) staining, Quantitative real-time PCR, TRAF6 plasmid transfection, Western blot, Measurement of nitric oxide (NO), ROS detection and Immunofluorescence were utilized in vitro. micro-CT scanning, Safranin O-Fast Green, toluidine blue and immunohistochemistry staining were performed in vivo.ResultsIn vitro, avicularin attenuates the degradation of ECM and inflammation, which could inhibit the activation of TRAF6/MAPK pathway via targeting TRAF6. Increased MMP3 and MMP13 expressions and decreased Aggrecan and Collagen Ⅱ levels were observed in anterior cruciate ligament transection (ACLT) induced osteoarthritic rats. Interestingly, intra-articular injection of avicularin attenuates this phenomenon.ConclusionsTaken together, our results indicate that avicularin suppresses cartilage extracellular matrix degradation and inflammation via TRAF6/MAPK activation by targeting TRAF6. These observations identify TRAF6 as a relevant drug target, and avicularin may as a potential therapeutic agent in osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号