首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

G A B AA/Benzodiazepine receptors are formed by the assembly of presumably five polypeptides with unknown stoichiometry. Six α, three β, two λ, and one δ subunit have been characterized on the molecular level. In analogy to the nicotinic acetylcholine receptor, and supported by functional analysis of recombinantly expressed GABAA receptor subunits, a structure containing at least three different polypeptides has been proposed for the functional GABAA and benzodiazepine regulated Cl?-channel. Using an α1 subunit specific antiserum we could show that additional α variants are present in α1 subunit containing GABAA/Benzodiazepine receptor complexes. This suggests that the diversity of GABAA/Benzodiazepine receptors may be larger than previously thought.  相似文献   

2.
The proliferation and differentiation of neural progenitor (NP) cells can be regulated by neurotransmitters including GABA and dopamine. The present study aimed to examine how these two neurotransmitter systems interact to affect post‐natal hippocampal NP cell proliferation in vitro. Mouse hippocampal NP cells express functional GABAA receptors, which upon activation led to an increase in intracellular calcium levels via the opening of L‐type calcium channels. Activation of these GABAA receptors also caused a significant decrease in proliferation; an effect that required the entry of calcium through L‐type calcium channels. Furthermore, while activation of D1‐like dopamine receptors had no effect on proliferation, it abrogated the suppressive effects of GABAA receptor activation on proliferation. The effects of D1‐like dopamine receptors are associated with a decrease in the ability of GABAA receptors to increase intracellular calcium levels, and a reduction in the surface expression of GABAA receptors. In this way, D1‐like dopamine receptor activation can increase the proliferation of NP cells by preventing GABAA receptor‐mediated inhibition of proliferation. These results suggest that, in conditions where NP cell proliferation is under the tonic suppression of GABA, agonists which act through D1‐like dopamine receptors may increase the proliferation of neural progenitors.  相似文献   

3.
γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.  相似文献   

4.
Abstract

Considerable progress has been made in our understanding of the diversity of adenosine receptors during the last decade, with the cloning of the orphan receptors RDC7 and RDC8 (1), and their subsequent characterisation as canine A1 and A2 receptors respectively (2,3), in the late 1980s. The principal objective of this review is to produce an integrated view of adenosine receptor classification, using the important observations from studies of molecular biology, receptor binding characteristics and functional pharmacology.  相似文献   

5.
6.
Suzuki T  Obara Y  Moriya T  Nakata H  Nakahata N 《FEBS letters》2011,585(24):3978-3984
A2A adenosine receptor (A2AR), P2Y1 receptor (P2Y1R) and P2Y12 receptor (P2Y12R) are predominantly expressed on human platelets. The individual role of each of these receptors in platelet aggregation has been actively reported. Previously, hetero-oligomerization between these three receptors has been shown to occur. Here, we show that Ca2+ signaling evoked by the P2Y1R agonist, 2-methylthioladenosine 5’ diphosphate (2MeSADP) was significantly inhibited by the A2AR antagonist (ZM241385 and SCH442416) and the P2Y12R antagonist (ARC69931MX) using HEK293T cells expressing the three receptors. It was confirmed that inhibition of P2Y1R signaling by A2AR and P2Y12R antagonists was indeed mediated through A2AR and P2Y12R using 1321N1 human astrocytoma cells which do not express P2Y receptors. We expect that intermolecular signal transduction and specific conformational changes occur among components of hetero-oligomers formed by these three receptors.  相似文献   

7.
AimsWe investigated the effects induced by exogenous adenosine on the spontaneous contractile activity of the longitudinal muscle of a mouse ileum, the receptor subtypes activated, the involvement of enteric nerves and whether opening of K+ channels was a downstream event leading to the observed effects.Main methodsMechanical responses of the mouse ileal longitudinal muscle to adenosine were examined in vitro as changes in isometric tension.Key findingsAdenosine caused a concentration-dependent reduction of the spontaneous contraction amplitude of the ileal longitudinal muscle up to its complete disappearance. This effect induced was markedly reduced by an A1 receptor antagonist, but not by A2 and A3 receptor antagonists and mimicked only by the A1 receptor agonist. Adenosine uptake inhibitors did not change adenosine potency. A1 receptor expression was detected at the smooth muscle level. Adenosine responses were insensitive to tetrodotoxin, atropine or nitric oxide synthase inhibitor. Tetraethylammonium and iberiotoxin, BKCa channel blockers, significantly reduced adenosine effects, whilst 4-aminopyridine, a Kv blocker, apamin, a small conductance Ca2+-activated K+ (SKCa) channel blocker, charybdotoxin, an intermediate conductance Ca2+-activated K+ (IKCa) and BKCa channel blocker, or glibenclamide, an ATP-sensitive K+ channel blocker, had no effects. The combination of apamin plus iberiotoxin caused a reduction of the purinergic effects greater than iberiotoxin alone.SignificanceAdenosine acts as an inhibitory modulator of the contractility of mouse ileal longitudinal muscle through postjunctional A1 receptors, which in turn would induce opening of BKCa and SKCa potassium channels. This study would provide new insight in the pharmacology of purinergic receptors involved in the modulation of the gastrointestinal contractility.  相似文献   

8.
9.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

10.
11.
Abstract

Adenosine receptor agonists were shown to inhibit evoked release of the tachykinins Substance P and Neurokinin-A from perifused myenteric synaptosomes. The potencies of selective A1 and A2 agonists are consistent with activity at adenosine A1 receptors located on the nerve endings.  相似文献   

12.
Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism.  相似文献   

13.
Abstract

Insolubility of membrane components in non-ionic detergents such as Triton X-100 at low temperature is a widely used biochemical criterion to identify, isolate and characterize membrane domains. In this work, we monitored the detergent insolubility of the serotonin1A receptor in CHO cell membranes and its modulation by membrane cholesterol. The serotonin1A receptor is an important member of the G-protein coupled receptor family. It is implicated in the generation and modulation of various cognitive, behavioral and developmental functions and serves as a drug target. Our results show that a significant fraction (~ 28%) of the serotonin1A receptor resides in detergent-resistant membranes (DRMs). Interestingly, the fraction of the serotonin1A receptor in DRMs exhibits a reduction upon membrane cholesterol depletion. In addition, we show that contents of DRM markers such as flotillin-1, caveolin-1 and GM1 are altered in DRMs upon cholesterol depletion. These results assume significance since the function of the serotonin1A receptor has previously been shown to be affected by membrane lipids, specifically cholesterol. Our results are relevant in the context of membrane organization of the serotonin1A receptor in particular, and G-protein coupled receptors in general.  相似文献   

14.
Abstract

A1 adenosine receptors were purified to an apparent homogeneity from rat brain and testicular membranes by a novel affinity chromatography system using xanthine amine congener (XAC) as an immobilized ligand. This affinity chromatography was also useful for the purification of human brain A1 adenosine receptor.  相似文献   

15.
Mesenteric arteries and veins are densely innervated by sympathetic nerves and are crucial in the regulation of peripheral resistance and capacitance, respectively, thus, in the control of blood pressure. Presynaptic adenosine receptors are involved in vascular tonus regulation, by modulating noradrenaline release from vascular postganglionic sympathetic nerve endings. Some studies also suggest that adenosine receptors (AR) may have a role in hypertension. We aim at investigating the role of presynaptic adenosine receptors in mesenteric vessels and establish a relationship between their effects (in mesenteric vessels) and hypertension, using the spontaneously hypertensive rats (SHR) as a model of hypertension. Adenosine receptor-mediated modulation of noradrenaline release was investigated through the effects of selective agonists and antagonists on electrically-evoked [3H]-noradrenaline overflow. CPA (A1AR selective agonist: 1–100 nM) inhibited tritium overflow, but the inhibition was lower in SHR mesenteric vessels. IB-MECA (A3AR selective agonist: 1–100 nM) also inhibited tritium overflow but only in WKY mesenteric veins. CGS 21680 (A2AAR selective agonist: up to 100 nM) failed to facilitate noradrenaline release in mesenteric veins, from both strains, but induced a similar facilitation in the mesenteric arteries. NECA (non-selective AR agonist: 1, 3 and 10 μM), in the presence of A1 (DPCPX, 20 nM) and A3 (MRS 1523, 1 μM) AR selective antagonists, failed to change tritium overflow. In summary, the modulatory effects mediated by presynaptic adenosine receptors were characterized, for the first time, in mesenteric vessels: a major inhibition exerted by the A1 subtype in both vessels; a slight inhibition mediated by A3 receptors in mesenteric vein; a facilitation mediated by A2A receptors only in mesenteric artery (from both strains). The less efficient prejunctional adenosine receptor mediated inhibitory effects can contribute to an increase of noradrenaline in the synaptic cleft (both in arteries and veins), which might conduce to increased vascular reactivity.  相似文献   

16.
Both microdialysis and electrophysiology were used to investigate whether another serotonin (5‐HT) receptor subtype next to the 5‐HT1A autoreceptor is involved in the acute effects of a selective serotonin reuptake inhibitor on 5‐HT neuronal activity. On the basis of a previous study, we decided to investigate the involvement of the 5‐HT7 receptors. Experiments were performed with the specific 5‐HT7 antagonist SB 258741 and the putative 5‐HT7 agonist AS19. In this study WAY 100.635 was used to block 5‐HT1A receptors. Systemic administration of SB 258741 significantly reduced the effect of combined selective serotonin reuptake inhibitor and WAY 100.635 administration on extracellular 5‐HT in the ventral hippocampus as well as 5‐HT neuronal firing in the dorsal raphe nucleus. In the microdialysis study, co‐administration of AS19 and WAY 100.635 showed a biphasic effect on extracellular 5‐HT in ventral hippocampus, hinting at opposed 5‐HT7 receptor mediated effects. In the electrophysiological experiments, systemic administration of AS19 alone displayed a bell‐shaped dose–effect curve: moderately increasing 5‐HT neuronal firing at lower doses while decreasing it at higher doses. SB 258741 was capable of blocking the effect of AS19 at a low dose. This is consistent with the pharmacological profile of AS19, displaying high affinity for 5‐HT7 receptors and moderate affinity for 5‐HT1A receptors. The data are in support of an excitatory effect of selective serotonin reuptake inhibitors on 5‐HT neuronal activity mediated by 5‐HT7 receptors. It can be speculated, that the restoration of 5‐HT neuronal firing upon chronic antidepressant treatment, which is generally attributed to desensitization of 5‐HT1A receptors alone, in fact results from a shift in balance between 5‐HT1A and 5‐HT7 receptor function.  相似文献   

17.
Abstract

Quantitative receptor autoradiography studies have shown that adenosine A1 receptors are heterogeneously distributed in the rat brain with high concentrations found in the forebrain and cerebellum. In contrast, high affinity A2 receptors appear to be exclusively localized in the striatum. These observations are discussed in relation to the putative neuromodulatory role of the purine in central neurotransmission.  相似文献   

18.
Abstract

In a search for potent and selective adenosine agonists it has been found that 2-hexynyladenosine-5′-N-ethyluronamide (HENECA) displays high affinity at rat A2A receptor combined with a good A2A vs A1 selectivity. The finding that HENECA shows good affinity also for A3 receptors prompted us to investigate the effect of various substituents in different positions of this molecule.  相似文献   

19.

Background

Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation.

Methods

mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart.

Results

Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists.

Conclusions

This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists.  相似文献   

20.
[Arg8]-vasopressin (AVP) plays a crucial role in regulating body fluid retention, which is mediated through the vasopressin V2 receptor in the kidney. In addition, AVP is involved in the regulation of glucose homeostasis via vasopressin V1A and vasopressin V1B receptors. Our previous studies demonstrated that vasopressin V1A receptor-deficient (V1AR−/−) and V1B receptor-deficient (V1BR−/−) mice exhibited hyperglycemia and hypoglycemia with hypoinsulinemia, respectively. These findings indicate that vasopressin V1A receptor deficiency results in decreased insulin sensitivity whereas vasopressin V1B receptor deficiency results in increased insulin sensitivity. In addition, vasopressin V1A and vasopressin V1B receptor double-deficient (V1ABR−/−) mice exhibited impaired glucose tolerance, suggesting that the effects of vasopressin V1B receptor deficiency do not influence the development of hyperglycemia promoted by vasopressin V1A receptor deficiency, and that the blockage of both receptors could lead to impaired glucose tolerance. However, the contributions of the entire AVP/vasopressin receptors system to the regulation of blood glucose have not yet been clarified. In this study, to further understand the role of AVP/vasopressin receptors signaling in blood glucose regulation, we assessed the glucose tolerance of AVP-deficient homozygous Brattleboro (di/di) rats using an oral glucose tolerance test (GTT). Plasma glucose and insulin levels were consistently lower in homozygous di/di rats than in heterozygous di/+ rats during the GTT, suggesting that the blockage of all AVP/vasopressin receptors resulting from the AVP deficiency could lead to enhanced glucose tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号